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ABSTRACT 
 

The wind hazard is assessed for the Egnatia Odos highway in Greece by considering Climate Change effects 

via the Euro-CORDEX future climatic projections. The aim is to derive spatially correlated region-wide wind 

fields for a stochastic event set of thousands of storm realizations that are suitable for risk and resilience 

assessment of the entire highway network. The coarse spatial and temporal resolutions of the Euro-CORDEX 

wind projections prohibit their use as a direct input in weather-related risk and resilience assessment of 

highway structures that may measure down to a few meters in size and require at most 10-min average wind 

speeds. To improve the temporal scale resolution, we leverage machine learning tools and continuous 

measurements from National weather stations to generate composite “Frankenstein” days comprising 144 

jigsaw pieces of actually measured 10-min wind time-histories that are scaled and matched together to form a 

continuous daily record. These point-estimates, valid only at the locations of the weather stations, are expanded 

spatially by employing high-fidelity Computational Fluid Dynamic simulations that take into account the 

topographic complexity of the site to simulate turbulent wind flows, thus generating spatially correlated wind 

fields of 10-min average wind speeds. These allow estimating load distribution and risk on (i) an event-by-

event basis and (ii) in the long-term for an ensemble of spatially-distributed highway assets that are vulnerable 

to wind actions, such as signpost bridges and power network pylons. 
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INTRODUCTION 

 

Climate and weather models/data come with a spatial and temporal resolution that may refer to kilometers and 

days, respectively. On the other end, civil engineering materials, structures and infrastructure are characterized 

at the level of centimeters or meters, while they dynamically respond to load time-histories discretized to 

fractions of a second. Bridging these two different scales is essential for projecting the effects of weather and 

climate on any individual structure. Further challenges are posed by building ensembles and interconnected 

infrastructure networks that also require cotemporaneous spatially-correlated fields of weather data, e.g., assess 

losses and downtime across a complex system swept by a single weather episode/event. This is the case of 

assessing a highway Road Infrastructure (RI) comprising signposts, lighting poles, toll booths, antennas and 



powerlines all under the same passing winter storm that might subject towers, steel members, conductors etc. 

to beyond-design-level wind speeds. Smart solutions can and have been implemented to tackle the lack of 

resolution per each individual type of structure and deterioration/failure mechanism. For example, annual 

maxima are used to capture extreme load effects (EN 1991, 2005), while characteristic years may be used to 

simulate the lifecycle deterioration under cumulative ageing mechanisms. Still, each such shortcut carries its 

own idiosyncrasies that do not necessarily lend to a consistent approach over an extended system, where 

multiple simultaneous failures can have a disproportionally large impact. What we instead propose is having 

a common basis with uncompromising spatiotemporal correlation of wind speed, suitable for any assessment 

purpose.    

In the context of the PANOPTIS project (2018), the effects of future climate on interconnected highway assets 

are assessed by taking advantage of coarse wind projections provided by the Euro-CORDEX (EC) database 

(Jacob et al, 2014), typically at a 12.5x12.5km grid per each day until year 2100, which are transformed to 

correlated 10-min time-histories at each geolocated point of interest. To do so, we employ historical weather 

station (WS) measurements and spatially correlated weather intensity measure fields (WIMFs) that provide 

cotemporaneous wind speed and direction values at all locations of interest. The obtained 10-min WIMFs that 

are derived from the 10-min time-histories are not expected to deliver a better short-term or more localized 

forecast/assessment, but they can bridge the resolution gap to provide consistent time-varying fields of weather 

parameters at a scale that is suitable for building-level engineering work, while they respect the long-term and 

large-scale statistical trends identified from existing data. The proposed methodology for generating the 

Frankenstein 10-mins and WIMFs is employed for assessing the wind risk for the Metsovo-Panagia segment 

of Egnatia Odos in Greece. 

 

FRAMEWORK FOR DOWNSCALING THE EURO-CORDEX WIND PROJECTIONS 

 

Euro-CORDEX provides projections of multiple climatic parameters in the future that rely upon alternative 

Climate Change (CC) scenarios. The CC scenarios are determined based on the greenhouse gas emissions of 

the Representative Concentration Pathways (Moss et al, 2010). For each emission scenario, multiple 

realizations of the climatic parameters are derived, each one coming from a different combination of general 

circulation model and regional climate model, with the former providing data in relatively coarse 

spatiotemporal resolutions and the latter employed to further downscale them. The resulting spatial resolution 

of most EC models is 0.11° or approximately 12.5km and the typical temporal resolution is one day. In other 

words, each day within, say, years 2000 to 2100, henceforth termed “EC-day” is represented by a single 

estimate of each weather parameter at each 12.5x12.5km cell, henceforth termed “EC-cell”. An example of 

precipitation, wind speed and direction projections obtained for an arbitrary EC-day for the Metsovo-Panagia 

segment of Egnatia Odos is shown in Fig. 1. In our case, among all EC parameters we are interested in the 

daily maximum wind speed and average wind direction that is computed via the eastward and northward near-

surface wind speeds provided by EC.  

The coarse spatial and temporal resolution of the EC data do not allow using them as a direct input for wind 

risk and resilience assessment of the highway; thus both resolutions need to be downscaled. They are 

downscaled on a 10-min basis by taking advantage of historical measurements of the WS that fall within the 

EC-cells of interest. For each EC-day, machine learning is employed to identify the three closest historically 

measured WS days that better match the daily EC target parameters. Having found these WS-days, their 10-

min values are combined to generate an artificial timeseries for the entire day, termed Frankenstein day (FS-

day) by its Mary-Shelley-esque virtue of being composed of initially mismatching parts of actual WS-days 

fitted together to recreate plausible high-detail characteristics of an EC-day. This synthetic, realistic but not 

real, day consists of 144 values of 10-min wind speed and direction, which retain as best as possible the 

correlation of WS measurements in time and space. This process allows obtaining future wind projections with 

a 10-min resolution at the locations of the WS for which the corresponding measurements are available.  



 

Figure 1. Example of Euro-CORDEX data for a part of the Egnatia highway (solid blue line) in Greece on 

an arbitrary day. The shading of the lower right figure shows daily precipitation values, the hatch is used 

for areas where the wind speed is higher than 15m/s, and the barbs show the mean wind direction. The 

upper left figure is adopted from https://www.euro-cordex.net/. 

 

This point-specific Frankenstein dataset can be expanded to encompass the 12.5x12.5km EC-cell if the spatial 

pattern of wind is known in order to generate 10-min spatially and temporally correlated Frankenstein WIMFs. 

To achieve so, spatially correlated wind speed and direction WIMFs are employed that are the product of site-

specific simulations. They provide 10-min spatially correlated values for a grid of points and allow expanding 

the suite of local weather parameters to all locations of interest within the WIMF grid.  

 

APPLICATION IN THE CASE-STUDY 

 

The proposed methodology is employed within the PANOPTIS project for assessing the weather-related 

hazard for the Metsovo-Panagia segment of the Egnatia Odos highway in Greece (Fig. 2). The highway has 

been constructed in a high-altitude environment and comprises multiple RI assets such as long bridges, tunnels 

and steep slopes, as well as many non-RI assets that enhance the functionality of the highway, e.g., steel 

signpost bridges, toll stations, utility poles providing power to the highway etc. Most of the non-RI assets are 

vulnerable to the weather-related hazard and specifically to high winds that might load the structures beyond 

their capacity even leading to collapse. For this reason, it is of significant importance to assess the wind hazard 

on a 10-min temporal resolution that allows linking it to the structural analysis results that are typically 

provided using the 10-min wind speed at 10m height, u10, as the intensity measure. 

For simplicity in our case only the Metsovo WS (Fig. 2) is considered in the analysis. It is installed at 1240m 

altitude with its anemometer being placed at 2m height, and provides 10-min wind speed and direction 

measurements. To ensure compatibility with the structural analysis, the wind speed values of the WS, uh, are 

converted from the anemometer height, h, to a 10m height via a power-law profile: 

(uh/u10) = (h/10)a      (1) 

where u10 is the wind speed at 10m height and a is a dimensionless parameter with a typical value of 0.2 for 

onshore areas (IEC 61400-1, 2005).  

For illustrative purposes the EC data are spatially and temporally downscaled for a single EC model, i.e., the 

RCA4-MPI-RCP2.6 (Jacob et al. 2014), and on an arbitrary EC-day. The 12.5x12.5km EC-cells for the given 

model are shown in Fig. 3, where the entire demo site and the Metsovo WS fall within one cell. The maximum 

daily wind speed is umax = 4.94m/s, while the average wind direction, θ, is computed from the daily average 

northward and eastward wind components on the given day. Assuming that enough WS-days are available, the 

idea is to match the given EC-day to past WS-days already measured. Finding the WS-day that better represents 

the EC-daily values is a challenge that requires bridging their different spatial and temporal resolutions. The 

https://www.euro-cordex.net/


EC data is global, i.e., EC-cell-level and daily while the WS data is local (grid point) and discretized to 10-

min intervals. The first task is to characterize each WS day at EC-cell level and daily values. Theoretically, we 

should be doing this regardless of the EC-day data by simply transforming the WS wind speeds and directions 

to global and daily levels. Still, this mapping is not necessarily one-to-one as the same local and short-period 

wind speeds and directions can mean potentially different things at nearby locations within the cell, based on 

e.g., the prevailing high-altitude wind direction. In other words, this transformation differs depending on the 

average daily wind direction of the EC model, which acts like a “hidden” parameter that is not be detectable 

at the WS level.  

 

Figure 2. Metsovo-Panagia segment of the Egnatia Odos in Greece showing also the location of the 

Metsovo weather station (WS) and the Metsovo valley indicated by the red rectangle. 

 

 

Figure 3. Boundaries of the RCA4-MPI-RCP2.6 Euro-CORDEX model at the Metsovo site shown in 

dashed magenta lines. The entire demo site falls within the highlighted Euro-CORDEX cell. 

 

 



To achieve mapping of the WS and EC-data, spatially distributed WIMFs are employed that allow linking 

point WS estimates to global EC-cell level values.  In our case the WIMFs are computed from high-resolution 

Large-Eddy Simulations (LES) via the PALM model (Maronga et al, 2019, Raasch & Schröter 2001, Hellsten 

et al, 2017), which take into account the topographic complexity of the site to simulate wind turbulent flows. 

They provide spatially correlated wind time-histories in 3D space that are computed for a given magnitude and 

direction of the prevailing, i.e., high-altitude wind direction under isothermal conditions. An example of the 

vertical section of a wind field that is generated for North prevailing wind direction around the Metsovo valley 

in Greece (see Fig. 2) is presented in Fig. 4. Typically, such simulations should be repeated for multiple wind 

profiles of increasing intensity but this would require considerable computational effort. For this reason, the 

LES wind time-series are assumed to be linearly scalable to allow matching any level of wind intensity of 

interest. Still, such scaling does not account for increases in the roughness layer due to the increased wind 

speed, thus, for large scale factors the corresponding wind gusts may be underestimated.  

 

Figure 4. Vertical section of the turbulent wind velocity distribution computed via the LES simulations for 

North prevailing wind at the Metsovo Bridge valley. 

 

The LES simulations are performed for 12 prevailing wind directions, each being representative of a 15° 

sector. They provide 1-hour wind time series that are converted to six alternative 10-min realizations of wind 

speed and wind direction WIMFs at all simulation sites. These spatially distributed WIMFs are employed for 

mapping the WS and EC-data to generate the Frankenstein days and WIMFs. As a first step, the most 

appropriate LES dataset is determined for the target EC-day. Since the link between the EC and LES data is 

not straightforward, it is assumed that in large-scale analysis, such as the one performed by EC, the adopted 

digital elevation model is often coarse and does not allow accounting for local effects, such as mountain-

induced turbulence. For this reason, the EC daily wind direction is assumed to match the prevailing wind 

direction of the LES simulations, considered to be constant within each day. This allows obtaining localized 

10-min wind speed information at all simulation sites for each EC-day and determining the average EC-cell-

level wind speeds by the following steps: 

• The LES WIMFs that are computed for the prevailing wind direction implied by the EC-daily wind 

direction are selected. 

• For each WS day: 

o For each 10-min of the WS data, one out of the six 10-min WIMFs of the selected LES is 

randomly chosen and scaled to match the 10-min wind speed measured by the WS. The 

average EC-cell level wind speed is determined when all LES simulation sites within the EC-

cell are considered via the scaled WIMF. 

o The maximum daily EC-cell level wind speed is computed by considering all 10-mins of the 

WS day. This EC-cell level daily maximum wind speed of the WS day bridges the different 

temporal and spatial scales of EC and WS data.  



Still, mapping the different temporal and spatial scales for wind direction by converting the local WS to global 

EC-cell level values is not an easy task. For this reason, the inverse process is followed and the wind direction 

distribution is determined at the WS location for the EC-target day. To achieve so, the wind rose at the WS 

location is determined from the selected LES dataset of the given EC-day, and assumed to be representative 

of the local wind direction statistics of the EC-day. For the WS days, the wind roses are determined based on 

the 10-min wind speed and direction measurements. Having determined the wind roses at the locations of the 

WS and the EC-cell, and the maximum EC-cell-level daily wind speeds for the sample WS and the target EC-

days, the WS day that better matches the target EC-values needs to be found. In a perfect setting, one would 

have as many observations as needed to match any EC-day prediction. In practice the observed WS samples 

are limited thus there is not enough data to perfectly reproduce a 24hrs timeseries to match any given EC-day, 

thus the kNN algorithm (Fix & Hodges, 1951, Cover 1967) is employed with k = 3. It provides the three closest 

WS days to the target EC-day along with the corresponding weights, pi, of day i = 1,…,3 matching the EC 

target, decreasing with distance from the target. The Frankenstein day is formulated by combining the data of 

the three selected source WS-days, employing the weight pi as a measure of how many continuous 10-min 

intervals to pick from each day. In our case the wind speed time series of the three closest source WS days are 

shown in Fig. 5a; they are split in the A, B and C continuous segments of 10-min intervals as per the pi weights.  

  

(a) three closest WS days (b) A, B & C components of WS days combined to 

form Frankenstein day  

  

(c) continuous-made Frankenstein day (d) Frankenstein day scaled to match daily EC 

target 

Figure 5. Steps for generating the Frankenstein time-series from the closest weather station days. 

 

 



The Frankenstein day is generated by its A, B and C parts, each one randomly selected from a different source 

WS day, as shown in Fig. 5b. Still, the resulting time-series is discontinuous, thus the A and C components are 

scaled to close the gaps with B, i.e., by matching the average wind speed of the last 30-min of component A 

to the average wind speed of the first 30-mins of component B. The same process is also followed for 

component C by matching the average 30-min wind speed of C to this of the last 30-mins of component B 

(Fig. 5c). Given the typical lack of sufficient observations, the Frankenstein time-series does not match the 

target EC wind speed, thus it is uniformly scaled to allow matching the target. To achieve so, for each 10-min 

of the FS-day, the cell-level wind speed is determined via the LES data and the equivalent-to-the-Frankenstein-

day EC-cell level time-series is scaled to match the daily EC target. The computed scale factor is finally 

assigned to the FS day and the resulting Frankenstein time-series is determined (Fig. 5d). The Frankenstein 

time-series is combined with the LES data of the selected prevailing wind direction to generate the spatially 

correlated Frankenstein WIMFs for all locations of interest that allow assessing risk both on an event basis and 

in the long-term. 

Countless other improvements specific to each targeted weather parameter or different case at hand can also 

be incorporated but they will probably come out naturally as different applications are tackled. Still, even the 

baseline approach proposed herein can offer insight on how the Frankenstein days can be generated based on 

EC-data, historical WS measurements and pre-computed WIMFs. 

 

CONCLUSIONS 

 

The artificial wind time-histories that are generated comply with the daily values provided by Euro-CORDEX 

while at the same time they maintain the spatial variation of the WIMFs and the temporal correlation observed 

in the weather station measurements. They are not forecasts, i.e., they are not expected to be actually observed 

in the future but they are plausible realizations of what may happen, statistically speaking, in a future day. 

Although we do not necessarily believe every single 10-min of the time-histories, they conform with the long-

term statistics provided by Euro-CORDEX and have the right temporal and spatial correlation to allow 

estimating risk on an event basis and in the long term. In many ways, they provide the needed information to 

connect coarse regional-level weather predictions with the resolution required for the asset-specific fragility 

and risk assessment of structures and infrastructures practiced by structural and geotechnical engineers.   
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