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Abstract: Seismic fragility curves are an essential tool for any risk assessment endeavour. 

While there is a wealth of studies that have provided high quality fragilities for many different 

types of structures, these curves are typically presented in terms of a single intensity measure 

(IM). To keep using such valuable data, an analyst is either forced to adopt the same 

(potentially suboptimal) IM, or completely discard them and restart with a new one. Instead, 

we propose a simple method for transforming a fragility curve to any IM of choice by using 

an equivalent single-degree-of-freedom model and its incremental dynamic analysis results to 

disaggregate the fragility to its constituent record-level results. Validation results from two 

complex 2D building hint that there is promise to this approach, offering nearly-error-free 

transformations of global-response fragilities at the cost of a few response history analyses of 

a nonlinear oscillator.   

Keywords: seismic fragility, equivalent single-degree-of-freedom, intensity measure, 

building structures 

1. Introduction 

     Fragility curves often provide a useful tool for a performance-based assessment for 

buildings of different characteristics by offering the probability of a structure exceeding a 

certain level of damage (Bakalis and Vamvatsikos 2018; Silva et al. 2019). Many literature 

studies provide seismic fragility curves that can be exploited by researchers for risk 

assessment studies; they are either analytically derived based on structural analyses (Erberik 

2008; Kappos and Panagopoulos 2010; Rossetto and Elnashai 2005), or fitted directly on 

empirical data from past observations (Giordano et al. 2021; Rosti et al. 2021; Rossetto and 

Elnashai 2003). Often though, these curves do not provide the flexibility needed to be 

effectively used in a wider setting. The most prominent problem is that the fragility curves 

provided use a specific intensity measure (IM), often this being the peak ground acceleration 

(PGA) or the spectral acceleration at a given period. In several cases, recent literature may 

recommend other intensity measure definitions as more suitable for a reliable assessment of 

a building’s behaviour (e.g., Kazantzi and Vamvatsikos 2015), but regardless of that, the IM 

used in each study often makes its results unavailable to another investigator using a different 

IM. This makes the valuable information encoded in fragility curves essentially useless 

outside of the specifics of their original source. Being able to transform one IM to another 

would at least resolve this basic incompatibility. Theoretically, having the full analysis or 

observational data on which a fragility is based would allow an easy transformation. Lacking 

such a solid foundation, an alternative path towards a potential solution could be the 

development of an equivalent model that would require only some of the structure’s basic 

structural characteristics to allow us to disassemble or disaggregate the original curves back 



into a facsimile of the original data that they were based on. In this way, the transformation 

between different IMs becomes possible. As the simplest such model, we shall herein 

investigate the suitability of an elastic-perfectly-plastic single degree of freedom (SDOF) 

model.  

2. Methodological approach 

As a simple application scenario, let us assume we have a multi-degree-of-freedom (MDOF) 

structure (but not necessarily its model) and its fragility curves for one or more limit-states, 

which we want to transform from their original IM to a new one. As a first step, an equivalent 

single-degree-of-freedom (ESDOF) model is developed, using the original MDOF 

characteristics (Fig.1), e.g. the structure’s fundamental eigenperiod and an estimate of its 

base shear strength, allowing for a bilinear representation of its capacity curve, as typical in 

nonlinear static procedures (e.g. EN1998-3, ASCE 41-17). This ESDOF is then subjected to 

incremental dynamic analysis (IDA, Vamvatsikos and Cornell 2002) using a single set of 

records. The record set of the original structure’s study may be adopted, if available, a record 

selection process could be employed if one prefers to have hazard consistency with the site 

of interest, or a generic site-agnostic set may be chosen as a last resort.  

 

Fig. 1 – Equivalent single-degree-of-freedom cantilever model definition. 

The first hurdle is estimating the engineering demand parameter (EDP) threshold for the 

ESDOF, 𝐸𝐷𝑃𝑙𝑖𝑚
𝐸𝑆𝐷𝑂𝐹 , which would produce the “same” fragility in the ESDOF, as the 

threshold of 𝐸𝐷𝑃𝑙𝑖𝑚
𝑀𝐷𝑂𝐹 would produce in the full model. For example, if the EDP of interest 

is the roof drift for a threshold in the elastic region of response, then one could state that 

𝐸𝐷𝑃𝑙𝑖𝑚
𝐸𝑆𝐷𝑂𝐹 = 𝐸𝐷𝑃𝑙𝑖𝑚

𝑀𝐷𝑂𝐹/𝛤, where Γ is the first-mode participation factor. In general, 

though, more complex EDPs may come into play, involving interstory drift, floor 

accelerations or member moments and forces, which may be tough to predict a priori. 

Furthermore, there can be cases where we are only supplied with the MDOF fragility but not 

the limiting EDP value that accompanies it. Thus, we shall use such simplified estimates 

only as a seed value, or 𝐸𝐷𝑃𝑙𝑖𝑚,0
𝐸𝑆𝐷𝑂𝐹, in an iterative approach to determine a near-optimal 

“corresponding” value for the ESDOF. Thus, if 𝑚𝑜𝑙𝑑
𝑀𝐷𝑂𝐹 and 𝛽𝑜𝑙𝑑

𝑀𝐷𝑂𝐹 are the median and 

dispersion, respectively, of the original MDOF lognormal fragility in terms of the original 

“old” IM, then the seed estimate of 𝐸𝐷𝑃𝑙𝑖𝑚,0
𝐸𝑆𝐷𝑂𝐹 threshold is employed to determine a new 



candidate fragility. Say that 𝑚𝑜𝑙𝑑,𝑖−1
𝐸𝑆𝐷𝑂𝐹 ,  𝛽𝑜𝑙𝑑,𝑖−1

𝐸𝑆𝐷𝑂𝐹  (where i = 1 initially) are its corresponding 

parameters in terms of the old IM. Then the 𝛼𝑖 factor is defined as the ratio of the MDOF 

over the ESDOF median for the i-th iteration: 

𝛼𝑖 = 𝑚𝑜𝑙𝑑
𝑀𝐷𝑂𝐹/𝑚𝑜𝑙𝑑,𝑖−1

𝐸𝑆𝐷𝑂𝐹                                                      (1) 

𝛼𝑖 is essentially a linear correction factor, meant to adjust the median parameter of the 

lognormal fragility of ESDOF, by multiplying 𝛼𝑖 with the previously defined 𝐸𝐷𝑃𝑙𝑖𝑚,𝑖−1
𝐸𝑆𝐷𝑂𝐹  

through the following equation: 

𝐸𝐷𝑃𝑙𝑖𝑚,𝑖
𝐸𝑆𝐷𝑂𝐹 = 𝛼𝑖 ∙ 𝐸𝐷𝑃𝑙𝑖𝑚,𝑖−1

𝐸𝑆𝐷𝑂𝐹                                                (2) 

It essentially works by exploiting the equal displacement rule, valid for moderate and long 

period structures to adjust the EDP threshold in increasingly smaller steps by translating IM 

differences to EDP ones. Obviously, where the rule does not hold, other iterative algorithms 

should be employed, such as Newton-Raphson or a simple bisection.  

Simultaneously, another correction process is at play, through the implementation of an 

additional external dispersion parameter 𝛽𝑎,𝑖, defined as: 

𝛽𝑎,𝑖 = {√𝛽𝑎,𝑖−1
2 + (𝛽𝑜𝑙𝑑

𝑀𝐷𝑂𝐹2
− 𝛽𝑜𝑙𝑑,𝑖−1

𝐸𝑆𝐷𝑂𝐹 2
)     if   𝛽𝑜𝑙𝑑

𝑀𝐷𝑂𝐹 > 𝛽𝑜𝑙𝑑,𝑖−1
𝐸𝑆𝐷𝑂𝐹

0                                                otherwise  

              (3) 

This parameter adjusts the dispersion for the fragility results calculated for the ESDOF to 

match the normally higher dispersion of the original fragility, calculated for the MDOF 

model. In the rare occasion that the dispersion of the ESDOF model happens to be higher 

than the one calculated for the MDOF, a bad EDP seed value would typically be the culprit, 

e.g. searching for an inelastic MDOF limit-state in the elastic or near-elastic ESDOF range. 

This extra variability parameter is simply used to update the ESDOF fragility dispersion via 

a squared-root-sum-of-squares rule: 

     𝛽𝑜𝑙𝑑,𝑖
𝐸𝑆𝐷𝑂𝐹 ← √𝛽𝑜𝑙𝑑,𝑖

𝐸𝑆𝐷𝑂𝐹2
+ 𝛽𝑎,𝑖

2
                                           (4) 

Through this iterative process 𝐸𝐷𝑃𝑙𝑖𝑚,𝑖
𝐸𝑆𝐷𝑂𝐹 is sequentially adjusted until the ESDOF fragility 

values converge to the MDOF ones. In each iteration, in order to assess whether or not the 

matching of those fragilities to the target ones is satisfactory, the Root Mean Squared Error 

(𝑅𝑀𝑆𝐸𝑖) value is calculated over a given discretization of the probability space to examine, 

given a tolerance value (e.g. 1%), the overall difference between the MDOF fragilities and 

the ones calculated for the ESDOF model in terms of the initial 𝐼𝑀𝑜𝑙𝑑 used. 

     The determination of the “converged” value of 𝐸𝐷𝑃𝑙𝑖𝑚,𝑖
𝐸𝑆𝐷𝑂𝐹 can now be used to 

disaggregate the old IM fragilities through the IDA results of the ESDOF, breaking them up 

into the N records used for the analysis. Specifically, the determination of the fragilities for 

the old IM on the ESDOF was done by virtue of vertical statistics, associating a single 𝐼𝑀𝑜𝑙𝑑,𝑗 

value to each j-th record (j = 1…N). The empirical CDF of said values is essentially the 

ESDOF fragility curve in 𝐼𝑀𝑜𝑙𝑑. Since these approximately reproduce the MDOF fragility, 

it follows that if one transforms each of them into the new IM, it should offer a good 

approximation of the MDOF fragility in this new space. To do so, a transformation factor  

𝐶𝑗 is defined as the ratio of the 𝐼𝑀𝑛𝑒𝑤,𝑢𝑠,𝑗 and 𝐼𝑀𝑜𝑙𝑑,𝑢𝑠,𝑗 values estimated for each of the 

unscaled records: 

     𝐶𝑗 = 𝐼𝑀𝑛𝑒𝑤,𝑢𝑠,𝑗/ 𝐼𝑀𝑜𝑙𝑑,𝑢𝑠,𝑗                                                 (5) 



Then, the N old IM values estimated for the fragility in question can be converted to new IM 

coordinates as:  

𝐼𝑀𝑛𝑒𝑤,𝑗 = 𝐼𝑀𝑜𝑙𝑑,𝑖,𝑗  ∙ 𝐶𝑗                                                     (6) 

Fitting a lognormal fragility to the 𝐼𝑀𝑛𝑒𝑤,𝑗 values allows the determination of its parameter, 

𝑚𝑛𝑒𝑤
𝐸𝑆𝐷𝑂𝐹 and  𝛽𝑛𝑒𝑤

𝐸𝑆𝐷𝑂𝐹that are now in terms of the “new” IM that was selected. 

To account for the missing dispersion observed in the old IM space, the additional dispersion 

parameter of 𝛽𝑎,𝑖, should be employed to augment the transformed fragilities: 

𝛽𝑛𝑒𝑤
𝐸𝑆𝐷𝑂𝐹 ← √𝛽𝑛𝑒𝑤

𝐸𝑆𝐷𝑂𝐹2
+ 𝛽𝑎,𝑖

2
                                             (7) 

A detailed pseudo-algorithm representing this methodological process appears in Table 1.   

 

Table 1: “TransformFragility” pseudo-algorithm for fragility IM transformation 

# Initialization  

Form ESDOF model 

Run IDA of ESDOF 

Determine approximate 𝐸𝐷𝑃𝑙𝑖𝑚,0
𝐸𝑆𝐷𝑂𝐹  that corresponds to 𝐸𝐷𝑃𝑙𝑖𝑚

𝑀𝐷𝑂𝐹  

Estimate 𝐼𝑀 𝑜𝑙𝑑,0,𝑗 (j=1…N) value that corresponds to 𝐸𝐷𝑃𝑙𝑖𝑚,0
𝐸𝑆𝐷𝑂𝐹  for each record j 

Estimate lognormal fragility parameters, 𝑚𝑜𝑙𝑑,0
𝐸𝑆𝐷𝑂𝐹 and 𝛽𝑜𝑙𝑑,0

𝐸𝑆𝐷𝑂𝐹 , corresponding to 𝐼𝑀 𝑜𝑙𝑑,0,𝑗 

Calculate 𝑅𝑀𝑆𝐸0 of ESDOF and MDOF fragility 

𝑖 =  0 

𝛼0 =  1.0  

𝜎𝛼,0 =  0.01    

 

# Iterative matching of ESDOF and MDOF fragilities  

Repeat  

    𝑖 = 𝑖 + 1 

    𝛼𝑖 = 𝑚𝑜𝑙𝑑
𝑀𝐷𝑂𝐹/𝑚𝑜𝑙𝑑,𝑖−1

𝐸𝑆𝐷𝑂𝐹     

    𝐸𝐷𝑃𝑙𝑖𝑚,𝑖
𝐸𝑆𝐷𝑂𝐹 = 𝛼𝑖 ∙ 𝐸𝐷𝑃𝑙𝑖𝑚,𝑖−1

𝐸𝑆𝐷𝑂𝐹   

    If   𝛽𝑜𝑙𝑑,𝑖−1
𝐸𝑆𝐷𝑂𝐹 <  𝛽𝑜𝑙𝑑

𝑀𝐷𝑂𝐹    

          𝛽𝑎,𝑖 = √𝛽𝑎,𝑖−1
2 + (𝛽𝑜𝑙𝑑

𝑀𝐷𝑂𝐹2
− 𝛽𝑜𝑙𝑑,𝑖−1

𝐸𝑆𝐷𝑂𝐹 2
)      

     else 

          𝛽𝑎,𝑖 = 0 

     end  

     Estimate 𝐼𝑀 𝑜𝑙𝑑,𝑖,𝑗 (j = 1…N) value that corresponds to 𝐸𝐷𝑃𝑙𝑖𝑚,𝑖
𝐸𝑆𝐷𝑂𝐹 for each record j 

     Estimate lognormal fragility parameters, 𝑚𝑜𝑙𝑑,𝑖
𝐸𝑆𝐷𝑂𝐹 and  𝛽𝑜𝑙𝑑,𝑖

𝐸𝑆𝐷𝑂𝐹 , corresponding to 𝐼𝑀 𝑜𝑙𝑑,𝑖,𝑗 

     𝛽𝑜𝑙𝑑,𝑖
𝐸𝑆𝐷𝑂𝐹 ← √𝛽𝑜𝑙𝑑,𝑖

𝐸𝑆𝐷𝑂𝐹 2
+ 𝛽𝑎,𝑖

2
 

     Calculate 𝑅𝑀𝑆𝐸𝑖  of ESDOF and MDOF fragility 

Until    (𝑅𝑀𝑆𝐸𝑖 − 𝑅𝑀𝑆𝐸𝑖−1)/𝑅𝑀𝑆𝐸𝑖−1 < 𝑡𝑜𝑙  
 

# Transform the fragility to a new IM 

For j = 1 to N records 

     Estimate 𝐼𝑀𝑛𝑒𝑤,𝑢𝑠,𝑗 and 𝐼𝑀𝑜𝑙𝑑,𝑢𝑠,𝑗 for unscaled record j 

     𝐶𝑗 = 𝐼𝑀𝑛𝑒𝑤,𝑢𝑠,𝑗/ 𝐼𝑀𝑜𝑙𝑑,𝑢𝑠,𝑗 

     𝐼𝑀𝑛𝑒𝑤,𝑗 = 𝐼𝑀𝑜𝑙𝑑,𝑖,𝑗  ∙ 𝐶𝑗 

end 

Estimate lognormal fragility parameters, 𝑚𝑛𝑒𝑤
𝐸𝑆𝐷𝑂𝐹 and  𝛽𝑛𝑒𝑤

𝐸𝑆𝐷𝑂𝐹 , corresponding to 𝐼𝑀𝑛𝑒𝑤,𝑖,𝑗 

 𝛽𝑛𝑒𝑤
𝐸𝑆𝐷𝑂𝐹 ← √𝛽𝑛𝑒𝑤

𝐸𝑆𝐷𝑂𝐹 2
+ 𝛽𝑎,𝑖

2
 



3. Case studies 

To examine the efficiency of the process presented in the previous paragraph, two typical 

2D building models were used as validation examples, namely a 4-storey reinforced concrete 

(RC) building (Chatzidaki and Vamvatsikos 2021), and a 20-storey steel building (Lachanas 

and Vamvatsikos 2021). The goal is to employ the available MDOF models from the 

aforementioned publications to estimate fragilities in Sa(T1) and attempt to transform them 

to PGA via the proposed procedure. By having the original IDA MDOF results available, 

we shall also be able to calculate the actual PGA fragilities and verify (or not) our approach. 

For the typical 4-storey RC building, an ESDOF model was developed using the building’s 

fundamental eigenperiod of T1 = 1.05sec, and its pushover curve, as the defining features of 

the model. To perform the pushover analysis a first-mode load pattern was utilized for the 

initial building, and then, as shown in Fig. 2, a bilinear curve was fitted. The bilinear 

approach selected was the 10% fit described in De Luca et al. (2013). For the 20-storey 

building a similar procedure was employed with the definition of the equivalent model being 

based on the building’s eigenperiod, T1 = 3.82sec, and its pushover curve as illustrated in 

Fig. 2, using again the aforementioned bilinear approach. Since the bilinear approach for the 

pushover curves was adopted for the model definitions, the plastic behaviour of the model 

is taken into account using a rotational spring (ΚΦ) at its base, with a rotational stiffness that 

would result to the corresponding pushover curve, simulating an elastic-perfectly-plastic 

behaviour identical to that illustrated in Fig. 2 for both buildings. 

 

Fig. 2 – Pushover curves for the 4-storey and 20-storey buildings. 

To calculate the fragility curves for the original buildings, IDA was performed using as an 

EDP, the Top Drift (TDR) of the structure. Using those analyses results and considering two 

limit states (LS) or capacity thresholds representing the 𝐸𝐷𝑃𝑙𝑖𝑚
𝑀𝐷𝑂𝐹 values, two LS cases were 

defined. Therefore, two fragility curves were calculated for each structure both in terms of 

spectral acceleration Sa(T1), and PGA. The fragility curves for the buildings studied appear 

in Table 2, referred as the ‘Original Structures (MDOF)’ and were calculated for LS1: TDR 

= 0.75% and LS2: TDR = 2.0%. The same procedure was employed for the corresponding 

ESDOF models defined, with the record sets used for the analyses of the simplified models, 

being the same used for each of the original buildings. Given the initial fragility results for 



the simulated models (𝑚𝑜𝑙𝑑,0
𝐸𝑆𝐷𝑂𝐹 , 𝛽𝑜𝑙𝑑,0

𝐸𝑆𝐷𝑂𝐹) (Table 2), and the target fragilities calculated using 

the original models (𝑚𝑜𝑙𝑑
𝑀𝐷𝑂𝐹 and 𝛽𝑜𝑙𝑑

𝑀𝐷𝑂𝐹) in terms of 𝐼𝑀𝑜𝑙𝑑 = Sa(T1), the process described 

in Table 1 was employed, for the adjustment of the calculated fragilities of the ESDOF 

models in terms of Sa(T1), to the corresponding results of the MDOF detailed models 

(𝑚𝑜𝑙𝑑,𝑖
𝐸𝑆𝐷𝑂𝐹 , 𝛽𝑜𝑙𝑑,𝑖

𝐸𝑆𝐷𝑂𝐹), and the IM transformation to the 𝐼𝑀𝑛𝑒𝑤  = PGA (𝑚𝑛𝑒𝑤
𝐸𝑆𝐷𝑂𝐹 , 𝛽𝑛𝑒𝑤

𝐸𝑆𝐷𝑂𝐹). 

The lognormal fragility parameters calculated for each case are presented in Table 2. 

In Fig. 3−4 a condensed overview of the results can be observed, in terms of simulating the 

fragility results of the original models (MDOF) with the simplified models discussed 

(ESDOF). The results are deemed to be satisfactory, given how close the simulated PGA 

and Sa fragilities are to the MDOF ones, with only minor errors observed for the transformed 

PGA case. 

Table 2. Fragility curves parameters for all models. 

Fragility Results 
DS1 DS2 

median (g) dispersion median (g) dispersion 

4
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Original Structure (MDOF) 
Sa(T1) 0.334 0.13 0.792 0.27 

PGA 0.352 0.43 0.829 0.42 

Seed Model (ESDOF,0) 
Sa(T1) 0.429 0.09 1.101 0.29 

PGA 0.453 0.41 1.161 0.45 

Adjusted Model (ESDOF,i) 
Sa(T1) 0.334 0.13 0.795 0.27 

PGA 0.352 0.43 0.838 0.45 

2
0

-s
to
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Original Structure (MDOF) 
Sa(T1) 0.112 0.25 0.304 0.33 

PGA 0.634 0.81 1.728 0.82 

Seed Model (ESDOF,0) 
Sa(T1) 0.146 0.10 0.429 0.33 

PGA 0.826 0.86 2.431 0.88 

Adjusted Model (ESDOF,i) 
Sa(T1) 0.113 0.28 0.308 0.31 

PGA 0.637 0.92 1.758 0.87 

 

 

 

Fig. 3 – Fragility curves results for the 4-storey building. 



 

Fig. 4 - Fragility curves results for the 20-storey building. 

4. Conclusions 

A simple methodology for the intensity measure (IM) transformation of fragility curves was 

presented. Two building models were used as validation achieving good accuracy both for a 

high-rise 20-story and a low-rise 4-story frame. It was showcased that even though a single-

degree-of-freedom model was proposed, this conversion should not be critically affected by 

its simplicity by virtue of an iterative correction process. Therefore, the proposed method 

could provide the required flexibility to transform any fragility curves to the desired IM, 

with a minimal error. Of course, further study is required in terms of quantifying the effects 

of the spectral shape of the seismic records selected for the simplified analysis, if the original 

records are not available. Moreover, the applicability to limit-states based on more localized 

measures of response, such as the interstorey drift or peak floor accelerations, should not be 

taken for granted, since they would be more difficult to capture using a model that discards 

the effect of higher modes.  
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