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ABSTRACT 
 

Estimating the seismic response of ground-supported rocking rigid blocks, is a topic that has attracted 

significant research interest in the past few decades, since it concerns, among others: (a) several modern 

structures or ancient monolithic columns that utilize rocking as a seismic protection mechanism and (b) 

numerous free-standing contents (e.g. museum artefacts) located on the ground floor or lower floors of stiff 

buildings. In the present research work, by means of a parametric study, utilizing two-dimensional rectangular 

blocks of varying sizes and ordinary earthquake records, the rocking response at increasing intensity levels 

was assessed through Incremental Dynamic Analyses. Following the demand evaluation and in order to allow 

for an easier utilization of the findings in practical applications, simplified approximate equations have been 

obtained via nonlinear regression analysis. The proposed equations provide an estimate of the peak rocking 

response distribution, expressed in terms of the normalized, to the dimensionless slenderness angle 𝛼, peak 

rocking angle, at increasing ground motion intensity levels. 
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INTRODUCTION 

The prediction of the dynamic response of free-standing ground-supported rigid rocking blocks under seismic 

ground motion excitations has attracted considerable research interest for several decades. The topic concerns 

a wide spectrum of structural (e.g. columns in cultural heritage structures, chimneys, bridge piers) as well as 

unanchored or ineffectively anchored acceleration sensitive nonstructural elements (e.g. museum artefacts, 

computer servers, electric equipment) whose unsatisfactory performance could undermine the community’s 

seismic resilience. Those elements are either explicitly designed to rock within the so called “safe region” 

(Spanos & Koh, 1984) when they are subjected to a sufficiently strong ground motion that could initiate 

rocking or unintentionally develop a rocking response since, they fall into the category of free-standing objects 

in which the rocking motion is not restricted by anchors or any other protection means (e.g. base isolation). 

The term “safe region” refers to the response domain that is away from the block overturning failure mode.  

Owing to the above, there is currently an emerging need for developing simplified response predictive 

expressions for estimating the rocking response of free-standing rigid blocks, in an analogous manner that 

simplified expressions exist in the literature for predicting the central value and the dispersion of the nonlinear 

response in yielding oscillators. The latter are the well-known R-μ-T relationships (e.g. Veletsos & Newmark, 

1960; Ruiz-Garcia & Miranda, 2007), where R is the strength ratio, T is the period of vibration, and μ is the 

ductility demand. The proposed approach utilizes the characteristic frequency 𝑝 as a substitute to the amplitude 

dependent rocking period, and consequently offers 𝛪 − 𝜃̃ − 𝑝 expressions, where, 𝜃̃ is the normalized peak 

rocking angle and I is a dimensionless intensity measure.   

 



ROCKING THEORY BASIC PRINCIPLES  

A rigid rocking block of mass m, as the one illustrated in Figure 1, may be considered to have a height equal 

to 2h and a base width equal to 2b. Assuming that the friction of the rocking plane is sufficiently high to 

prevent sliding, the block under a horizontal ground motion excitation 𝑢̈𝑔 will be set to rocking about its pivot 

points O and O΄ when the ground motion acceleration becomes at least equal to g ∙ tan𝛼, where g is the 

acceleration of gravity and 𝛼 is the block stability (or slenderness) angle, that is given by, 

         𝛼 = tan−1 (
𝑏

ℎ
)                                                                                       (1)  

The block stability angle 𝛼 along with the block half diagonal, R defined as, 

                                                               𝑅 = √𝑏2 + ℎ2                                (2) 

fully specify the geometry of the rigid block. The equation of motion that provides the angular acceleration 𝜃̈ 

during the rocking motion can be expressed as (e.g., Makris & Vassiliou, 2013), 

                               𝜃̈ = −𝑝2 ∙ [sin(𝛼 ∙ sgn(𝜃) − 𝜃) +
𝑢̈g

g
∙ cos (𝛼 ∙ sgn(𝜃) − 𝜃)]                                              (3) 

where, 𝑝 is the characteristic frequency parameter of the rigid rocking block equal to, 

                                                               𝑝 = √
3∙g

4∙𝑅
                                                                                                   (4) 

Under pure rocking, when the block returns to its initial position (i.e. when rotation changes sign at 𝜃 = 0), 

impact occurs. One possible way to treat impact is by means of the coefficient of restitution, 𝜂 that essentially 

provides a relation between the pre- and post-impact angular velocities, 𝜃̇1 and 𝜃̇2, (Housner, 1963) 

respectively, as 

                                                         𝜂 =
𝜃̇2

𝜃̇1
                                                                                                  (5) 

 

Figure 1. Rocking block geometry 

 

METHODOLOGY 

For estimating the rocking response for a series of rocking blocks, which will consequently allow us to develop 

the ready-to-use 𝛪 − 𝜃̃ − 𝑝 distribution expressions, we adopted the standard Incremental Dynamic Analysis 

(IDA) methodology (Vamvatsikos & Cornell, 2002) with the proposed alterations by Lachanas & Vamvatsikos 

(2022) for the specific case of rocking structures. For performing the needed time-history analyses on the 

considered rigid rocking blocks subjected to horizontal acceleration at their base, a suite of 105 ordinary (no 

long-duration, no pulse-like) ground motion records was selected from the PEER-NGA strong motion database 

(PEER, 2006). Hence, the only source of uncertainty in estimating the rocking response statistics per rocking 

block size will be the inherent randomness in the acceleration signature.  

To fully define each IDA curve an efficient and sufficient Intensity Measure (IM) along with an Engineering 

Demand Parameter (EDP) representative of the response of the rocking block are needed.  Herein, two 

dimensionless IMs are adopted, as originally proposed by Dimitrakopoulos & Paraskeva (2015), which will 

be collectively referred to by the symbol 𝛪:  



(a) the dimensionless peak ground acceleration, 𝑃𝐺𝐴/(g ∙ tan𝛼), henceforth denoted as 𝐼𝐴 = 𝑃𝐺𝐴/gtan𝛼   

(b) the dimensionless peak ground velocity, 𝑝𝑃𝐺𝑉/(g ∙ tan𝛼), henceforth denoted as 𝐼𝑉 = 𝑝𝑃𝐺𝑉/gtan𝛼 

With respect to the EDP, the absolute peak rocking angle 𝜃𝑚𝑎𝑥 normalised by the block stability angle 𝛼, i.e., 

𝜃̃ = 𝜃𝑚𝑎𝑥/𝛼, was employed. The first appearance of 𝜃̃ > 0 signifies the onset of rocking, whereas 𝜃̃ ≥ 1 can 

be taken to signify nominal overturning. In the process of defining the seismic induced rocking response from 

the initiation of rocking up to block instability (overturn) the ground motion records were incrementally scaled 

at increasing intensity levels. 

To formulate, to the extent possible, an easy-to-implement probabilistic model for evaluating the response 

statistics of the rocking response, only those variables that are strongly affecting it will be maintained. With 

reference to the block size, it was showcased by several past studies (e.g. Housner, 1963; Yim et al, 1980) that 

it is strongly affecting rocking and hence the associated parameter, i.e. the characteristic frequency 𝑝, could 

not be normalized out of the process. Yet, following a rocking response sensitivity analysis (see Figure 2) it 

was demonstrated that variations in the block stability (or slenderness) angle 𝛼 are barely noticeable in the 

computed rocking response for any practical application and hence may be disregarded. This essentially means 

that a constant value for such a parameter will be assumed for estimating the response statistics in this study 

(i.e. 0.22 rad) and those will hold for rocking blocks with other slenderness ratios, at least when those are 

subjected to ordinary ground motion records.     

A similar sensitivity analysis was undertaken for checking the effect of the restitution coefficient 𝜂 on the 

rocking response. Contrary to the block stability angle 𝛼, it was found that even small variations result in 

notably different rocking responses for the same block size. However, given (a) the dominant and significant 

dispersion due to the record-to-record variability and (b) the difficulty in determining such a parameter outside 

of controlled experiments, the restitution coefficient was set to a constant value [i.e. 𝜂 = 0.92 as for instance 

in Giouvanidis & Dimitrakopoulos (2018)]. Consequently, the proposed expressions are anticipated to hold at 

least for moderate variations of the restitution coefficient around this value.  

For the detailed probabilistic assessment on the response of ground-supported rocking blocks, a total of 44 

rectangular rigid blocks were considered. Those blocks have frequency parameters 𝑝 that range from 0.7 s-1 to 

5.0 s-1, and their dimensions span across the following boundaries: 

  p=0.7 s-1 corresponds to a block with 2b ≈ 6.55 m, 2h ≈ 29.31 m 

p=5.0 s-1 corresponds to a block with 2b ≈ 0.13 m, 2h ≈ 0.57 m 

The response of the rocking blocks was studied utilizing 2D models. Each of the 44 rocking blocks was 

subjected to one horizontal component of the 105 considered ground motion record pairs. At each intensity 

level, the rocking response was computed by solving Equation (3) using the software developed by Vassiliou 

(2021) to estimate the peak rocking angle 𝜃𝑚𝑎𝑥. 

 

  

Figure 2. IDAs for two different earthquake records for variable block stability angles 𝛼 and a constant 

coefficient of restitution 𝜂 considering a rigid block with 𝑝=1s-1. 



REGRESSION ANALYSIS OF ROCKING RESPONSES 

As discussed earlier, the ultimate scope of this study is to develop simplified, yet sufficiently accurate, rocking 

response distribution expressions that practicing engineers could easily utilize for computing the seismic 

rocking response statistics of free-standing rigid blocks that are founded at the ground level. This is deemed to 

be a rather important aid to seismic design and assessment studies that involve rocking systems. To this end, a 

nonlinear regression analysis was applied on the computed rocking response data, that are essentially EDP 

data associated to certain IM levels, to get 𝛪 − 𝜃̃ − 𝑝 expressions for their median and dispersion (i.e. standard 

deviation of the log of the data). The results are presented here for two IMs, these being the dimensionless 

PGA and PGV of the horizontal component of ground motion applied to the block. 

Median and dispersion fitting for PGA 

Equation (6) depicts the functional form that is used to relate the median dimensionless EDP, 𝜃̃50, with the 

dimensionless PGA intensity, 𝐼𝐴, which is the 𝑃𝐺𝐴/gtan𝛼. The first part of this expression captures the 

transition from the very initiation of motion to actual rocking, the second represents the main body of rocking 

response up to overturning and the third part captures the first occurrence of nominal overturning. The intensity 

level where overturning occurs is fitted via a separate regression, using an expression that is only a function of 

𝑝.  

𝜃̃50(𝐼𝐴) = {

𝜃̃1(𝐼𝐴 − 𝐶1)/(1.2 − 𝐶1)                                   for 𝐶1 ≤ 𝐼𝐴 ≤ 1.2

0.1 ∙ 𝐴1 ∙ (𝐼𝐴 − 𝐶1)1.25 −
𝐵1

100
                for  1.2 < 𝐼𝐴 < 𝐼𝐴50,𝑜𝑣𝑡

1                                                                               for 𝐼𝐴 ≥ 𝐼𝐴50,𝑜𝑣𝑡

                                                         (6) 

𝜃̃1 is estimated by the second branch of Equation (6) for 𝐼𝐴 = 1.2 and 𝐼𝐴50,𝑜𝑣𝑡 is the median ground motion 

intensity level that triggers overturning in the rocking block, which can be computed via  

 𝐼𝐴50,𝑜𝑣𝑡 = 𝐴2 +
𝐵2

𝑝2                                                                                                                                                  (7) 

Note that despite using least-squares estimation, we do not employ regression per se to derive the entire 

distribution in one step. Instead, we are using curve-fitting to derive customized expressions per each statistic 

of interest, allowing us to casually invert Equation (6) and consequently determine the median intensity, 𝐼𝐴50, 

given 𝜃̃, which however is not reported here for brevity.  

Figure 3 compares the actual median responses against those estimated by means of Equation (6), for a number 

of indicative 𝑝 values. Figure 4 illustrates the overturning intensity for the entire range of 𝑝 considered in this 

study. Apparently, the proposed rocking response distribution expressions provide a good estimate of the 

median response for a multitude of blocks and across a wide range of intensities.  

Table 1. Expressions and constants used with Equations (6-7) to define the median values for PGA. 

IM A1 B1 C1 A2 B2 

𝑃𝐺𝐴/gtan𝛼 0.4085 ∙ 𝑝2.6097 0.4514 ∙ 𝑝2.7299 1.0000 1.1142 8.8431 

 

  

Figure 3. Median seismic demand estimates for rocking blocks with different characteristic parameters over 

a range of intensity levels. Results are presented for the dimensionless PGA. Fit is shown with dashed lines. 



A full probabilistic model cannot be considered complete without offering dispersion estimates. In this study, 

the dispersion estimates at each intensity level were computed as the half-distance between the logarithm of 

the 16% and the 84% percentiles typically assuming a lognormal distribution. Similarly to the fitting approach 

adopted for the median, the curve fitting process on the dispersion curves of Figure 5 yielded for the dispersion 

the following expression, 

𝛽𝐴(𝜃̃) = {
𝐴1 ·

𝜃̃𝐵1

𝑒𝜃̃
                       for 0 ≤ 𝜃̃ ≤ 0.8

𝛽𝐴(𝜃̃ = 0.8)                         elsewhere
                                                                                                                     (8) 

  

Figure 4. Median seismic demand for the first occurrence of overturning considering the dimensionless PGA 

as an IM. 

Table 2. Expressions used with Equation (8) to define the dispersion for PGA. 

IM A1 B1 

𝑃𝐺𝐴/gtan𝛼 
0.0420 ∙ 𝑝3 − 0.3719 ∙ 𝑝2 + 

+ 0.6205 ∙ 𝑝 + 1.6220 

0.0088 ∙ 𝑝3 − 0.1302 ∙ 𝑝2 + 

+ 0.5635 ∙ 𝑝 + 0.0581 

 

  

Figure 5. Dispersion estimates for rocking blocks with different characteristic parameters. Results are 

presented for the dimensionless PGA. Fit is shown with dashed lines. 

 

Median and dispersion fitting for PGV 

An identical fitting approach to the one adopted for the rocking response data obtained considering the PGA 

as an IM was also utilized for PGV. Equation (9) depicts the functional form that is used to relate the median 

dimensionless EDP, 𝜃̃50, with the dimensionless PGV intensity, 𝐼𝑉, or 𝑃𝐺𝑉/gtan𝛼. 

𝜃̃50(𝐼𝑉) = {

0.001(𝐼𝑉 − 𝐼𝑉1)/ (𝐼𝑉2 − 𝐼𝑉1)                         for   𝐼𝑉1 ≤ 𝐼𝑉 ≤ 𝐼𝑉2

𝐴1 ∙ (𝐼𝑉 − 𝐼𝑉1)1.5 −
𝐵1

1000
                            for  𝐼𝑉2 < 𝐼𝑉 < 𝐼𝑉50,𝑜𝑣𝑡

1                                                                                 for 𝐼𝑉 ≥ 𝐼𝑉50,𝑜𝑣𝑡

                                                                     (9) 



where, 

 𝐼𝑉1 = 𝐶1 ∙ 𝑝                                                                                                                                                          (10)  

𝐼𝑉2 is estimated by the second branch of Equation (9) for 𝜃̃ = 0.001, and 𝐼𝑉50,𝑜𝑣𝑡 is the median ground motion 

intensity level that triggers overturning in the rocking block (see Figure 7), which may be computed by 

                                          𝐼𝑉50,𝑜𝑣𝑡 = 𝐴2 ∙ 𝑝4 + 𝐵2 ∙ 𝑝3 + 𝐶2 ∙ 𝑝2 + 𝐷2 ∙ 𝑝 + 𝐸2                                          (11) 

Note that Equation (9) could be also inverted to determine the median intensity, 𝐼𝑉50, given 𝜃̃. As can be 

inferred by inspecting Figure 6, the proposed simplified expressions provide a good approximation of the 

median rocking response across a range of intensities and for a spectrum of block sizes.  

Table 3. Expressions and constants used with Equations (9-11) to define the median values for PGV. 

IM A1 B1 

𝑝𝑃𝐺𝑉/gtan𝛼 
0.0468 ∙ 𝑝3 − 0.3018 ∙ 𝑝2 + 

+ 1.7193∙ 𝑝 − 0.3845 

−0.1743 ∙ 𝑝3 + 3.2451 ∙ 𝑝2 + 

+1.4941∙ 𝑝 − 2.4536 

IM C1 A2 B2 C2 D2 E2 

𝑝𝑃𝐺𝑉/gtan𝛼 0.0919 0.0147 -0.1899 0.8917 -1.7937 1.9373 

 

 
 

  

Figure 6. Median seismic demand estimates for rocking blocks with different characteristic parameters over 

a range of intensity levels. Results are presented for the dimensionless PGV. Fit is shown with dashed lines. 

  

Figure 7. Median seismic demand for the first occurrence of overturning considering the dimensionless PGV 

as an IM. 

 

A two-part expression is also formed by undertaking a nonlinear regression analysis for the dispersion of 𝐼𝑉, 

𝛽𝑉(𝜃̃) = {
𝐷1 − 𝐴1 ·

𝜃̃

(𝜃̃+𝐵1)𝐶1
                            for 0 ≤ 𝜃̃ ≤ 0.7

𝛽𝑉  (𝜃̃ = 0.7)                                                 elsewhere
                                                                                                   (12) 



The fit illustrated in Figure 8 with the dashed line is considered satisfactory and slightly on the conservative 

side in regions of high deviations. Hence proposing more complicated expressions was deemed to be an 

unnecessary refinement.  

 

  

Figure 8. Dispersion estimates for rocking blocks with different characteristic parameters. Results are 

presented for the dimensionless PGV. Fit is shown with dashed lines.  

 

Table 4. Expressions used with Equation (12) to define the dispersion for PGV. 

IM A1 B1 C1 D1 

𝑝𝑃𝐺𝑉/gtan𝛼 0.0090 ∙ 𝑝7.6659 0.1750 ∙ 𝑝2.4969 4 0.4880 

 

 

CONCLUSIONS 

Given the potential of the rocking motion to constitute a favorable seismic response mechanism for a variety 

of structural configurations and its unintentional occurrence in unanchored nonstructural elements, the 

analytical modeling of rocking blocks has attracted considerable research interest. The accurate prediction of 

the seismic induced rocking demands under a particular ground motion record remains a problem of substantial 

complexity due to the spectrum of uncertainties that are likely to affect the outcome. Yet, owning to a well-

established observation that the acceleration signature is the dominant uncertainty source which masks the 

remaining modeling uncertainty sources, the problem was studied here from a probabilistic standpoint. Hence, 

the presented study utilized 105 ordinary ground motion records to capture the record-to-record variability and 

consequently numerically assess the distribution of the peak rocking responses in free-standing rigid rocking 

blocks of variable sizes. Then these data were exploited by means of a nonlinear least-square regression 

analysis to develop a set of simplified analytical expressions for estimating the median and the dispersion of 

the peak rocking response as a function of the characteristic frequency of the block and the intensity of the 

ground motion. The proposed expressions cover the entire range of the rocking responses, from the initiation 

of rocking to overturning, and can be readily used in design and performance-based assessment applications. 

A more comprehensive set of equations with additional details on derivation and applicability can be found in 

Kazantzi et al. (2021).  
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