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ABSTRACT 
 

The (new) 20’s have allowed us to dream big on protecting our infrastructure from natural hazards. Powerful 

computers, machine learning, terrestrial and airborne sensors are at our disposal to help us quantify the 

consequences of potential hazardous events that may come in the future, are already unfolding, or have 

already happened. Owing to its origins in four European projects, namely HYPERION, ARCHYTAS, 

PANOPTIS and INFRASTRESS, the HAPI framework has been formulated to perform pre/trans/post-event 

risk and resilience assessment of diverse infrastructure, comprising different layers of networked, loosely-

connected or autonomous assets within a city, region or country. Building upon the well-worn basis of 

hazard-exposure-vulnerability that underpins practically all insurance risk estimates, HAPI enables 

assessment of cascading (e.g., mudflow/landslide after earthquake) and cotemporaneous (e.g., extreme 

precipitation, temperature, ice and wind scenario) hazards, while it offers sensor integration with near-real-

time updating of predictions based on hazard/asset/consequence information input. Both “static” memoryless 

hazards (e.g., earthquake), as well as “dynamic” time-dependent hazards (e.g., climate projections) are 

incorporated in tandem with static/dynamic vulnerabilities, allowing the tracking of complex phenomena, 

such as climate change, and their effect on the aging/corrosion/fatigue of a diverse set of assets, including 

buildings, bridges, piping, powerlines, highways and cultural heritage monuments. At the very basis lies a 

vast database of hazard and asset realization scenarios, employing Total Probability Discrete Event 

Simulation to explicitly track network interdependencies and propagate uncertainty from our source 

information to the projected integrated-system functionality and eventual recovery. 
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INTRODUCTION 

 

Risk and resilience assessment under natural hazards has advanced in leaps and bounds over the past decade, 

moving from single assets (e.g. FEMA 2000) and groups of assets (Silva et al 2020) to lifelines and systems. 

These encompass transportation networks (Costa et al 2018; Kilanitis & Sextos 2019), gas distribution 

networks (Esposito et al 2015), and water supply networks (Romero et al 2010), as well as interdependent 

networks with cascading failures (Poljanšek et al 2012; Pitilakis et al 2014; Dueñas-Osorio et al 2007a,b; 

Dueñas-Osorio and Vemuru 2009). Furthermore, rather than capturing just one peril (or source of hazard), 

nowadays different perils are captured and multi-hazard assessment is slowly becoming the new standard 

(Argyroudis et al 2020).    

Generally, the focus is on long-term pre-event assessment, targeting annualized long-term statistics of 

damage, loss and time-to-recover. Still, the advent of low-cost sensors has enabled a new era of multiple 

information sources that can be reliably used to update long-term statistics to develop short-term, trans/post-

event estimates. Working in this direction, we offer a general framework that works through the well-known 

concepts of stochastic event sets, intensity measure fields and and asset realizations to help us provide near-

real-time estimates of impact and recovery as an event unfolds or right after it has hit.  



METHODOLOGY 

 

The basic ingredients of the so-called HAPI framework are fundamentally the same employed in any 

practical risk assessment. As outlined in Figures 1 and 2, these include (i) the stochastic event set of potential 

event realizations together with (ii) the associated intensity measure (IM) fields that describe the correlated 

intensities of each event at each geographical location of interest. Next (iii) comes the exposure model of 

assets at risk, as well as their respective vulnerability functions that relate the metrics of interest given the 

intensity experienced by an asset. By employing a large-scale Monte Carlo analysis, at a minimum we expect 

to derive loss curves and loss maps, giving us overall statistics and detailed realizations of damage and loss 

(or any other metric of choice) for each asset and location of interest. Let us now take advantage of these 

well-known fundamental quantities and try to place them within a proper mathematical framework that will 

allow us to conduct both long-term and short-term assessments with ready fusion of sensor input. 

 

Figure 1. The typical breakdown of risk into hazard, exposure, and vulnerability, forming the basis of the 

HAPI framework.  

  

 

Figure 2. An example of an IM field for seismic hazard (left), and a Stochastic Event Set of fault ruptures 

(right). 

 

 

 



Long-term pre-event assessment 

 

Our long-term pre-event approach is largely based on the Cornell-Krawinkler framework (Cornell & 

Krawinkler 2000) originally adopted by the Pacific Earthquake Engineering Research Center for seismic risk 

assessment of single assets. Herein, a fairly straightforward extension to multiple assets and multiple hazards 

is undertaken. Whereas the original framework was written in terms of continuous variables and integrals, 

the HAPI extension acknowledges the practicality of the discrete formulation in a so-called Total Probability 

Discrete Event Simulation (TPDES), which is after all the standard for most (if not all) applications in 

practice: 

 ( ) p( | )p( | )p( | ) ( )  = 
DS EDP IM

DV DV DS DS EDP EDP IM ΙΜ  (1) 

where  

λ(∙) is the mean annual rate function of its argument 

p(∙) is the probability mass function, or probability of occurrence of its argument 

IM = (IMi,j, i = 1…Nperil, j = 1…Nsite) is the vector of intensity measures (IMs), which incorporates all 

intensity types employed to describe the Nperil perils of interest (e.g., wind, earthquake, flood, etc.), at all Nsite 

sites where assets are located. Each realization of the vector represents a field of spatially and temporally 

correlated intensities that are consistent with a scenario event. 

EDP = (EDPi,j, i = 1…Nasset, j = 1…Mi) is the vector of engineering demand parameters (EDPs), comprising 

the Mi structural response variables recorded from the Nasset assets. Obviously, different numbers and types of 

EDPs may be recorded for different assets depending on their characteristics and level of modelling detail 

employed. For example, a 5-story structure may be represented only by its roof drift for a 1D representation, 

5 peak story drifts and 6 peak floor accelerations for 2D, or twice this number in a 3D model. Each 

realization of the IM vector typically corresponds to multiple EDP realizations, due to the inherent 

uncertainty in structural response given the hazard intensity for any single asset.   

DS = (DSi,j, i = 1…Nasset, j = 1…Ki) is the vector of damage states (DSs), containing the Ki component 

damage states associated with each of Nasset assets. In general, one may choose to assign a single global 

damage state to a given asset (e.g. DSi,1 = 0 for no damage, 1 for light damage, etc.), or instead follow a 

component-by-component breakdown, assigning different damage states to different parts of the structure 

(Porter et al 2012; D’Ayala et al 2015). For example, in the latter case one may consider separately different 

stories of a multi-story building, or split a bridge to its abutments, piers, deck, and bearings. Note that 

originally the Cornell-Krawinkler framework (Cornell & Krawinkler 2000) specified a continuous Damage 

Measure rather than discrete DSs. Still, the latter is by far the norm in practice and naturally better fits our 

already discretized approach. In general, when considering unconnected assets, such as separate buildings 

that do not interact in any way which each other, one may reasonably assume that the EDPs corresponding to 

each asset will fully determine the corresponding DS distributions. For interconnected assets (e.g., 

transportation, power transmission or water supply networks) the state of an asset may be compromised by 

other adjacent ones. For example, an upstream pipe breakage will disrupt water supply for all downstream 

pipes, while failure of a power transmission tower will often overstress its adjacent ones, increasing their 

chance of collapse. In any case, each realization of EDP will invariably spawn a number of DS realizations, 

again due to the intrinsic uncertainty.  

DV = (DSi, i = 1…NDV) is the vector of decision variables (DVs), incorporating both asset and 

system/ensemble-level quantities that can be used to assess the state of each individual asset and 

set/subset/system/subsystem of interest. Different metrics may be employed as DVs, ranging from the direct 

and indirect repair cost, time-to-repair, and casualties, for single assets per FEMA P-58 (FEMA 2012), or, at 

the system level, overall cost, time of recovery, traffic delays, number of customers without power, gas or 

water, etc. Similarly, each realization of DS can result to multiple DV values. 

For simplicity, one may also write Equation 1 as follows:       
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where p( | )DV ΙΜ can be broadly defined as the vulnerability function: 

 p( | ) p( | )p( | )p( | )=
DS EDP
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Conceptually, one may employ the concept of vulnerability functions to characterize each individual asset, 

similarly reducing the dimensionality of DV, DS, EDP and IM, to those elements that matter for the asset in 

question. In the case of unconnected assets, one may thus partition the cumbersome Equations 1 and 2 into 

the far more practical form of 
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where the subscript i is used to imply the parts of DS, EDP and IM, that pertain to the ith asset. For 

interconnected assets, while one may still find good use for the single-asset vulnerability functions, their 

combination cannot be simplified to a simple sum per Equation 4, as network effects now come into play and 

the state of one asset can influence the others. The overall process is conceptually presented in Figure 3.  

 

Short-term pre/trans-event risk 

 

In the case of an event that has just occurred (e.g., an earthquake) or is presently unfolding (e.g., an on-going 

flood or storm), one can employ local sensor observations to improve her/his predictions. In order to achieve 

near-real-time assessment, the fastest approach is to take advantage of the vast scenario data pool that has 

already been generated for the long-term assessment. There are different types of sensors one may employ in 

this exercise: 

− IM or Hazard sensors, such as seismographs, weather stations, or flood height meters can offer 

information on the actual values of the IM experienced at each site of interest 

− EDP or (asset) Response sensors, such as accelerometers, strain gauges, etc. that offer information on the 

actual response of the asset. 

− DS or Impact sensors, the simplest one of which is a camera, allowing us direct information on the 

damage state of an asset and/or its components. 

Each of these sensors can reduce the uncertainty inherent in Equation 1, reducing the number of potential 

realizations that could match what has already occurred. Practically speaking, one may use said observations 

to screen the set of all available scenarios, essentially reducing it to (DS, EDP, IM) in Cobs, where Cobs is the 

subset of all DS, EDP, and IM scenarios that are compatible with the observations, as shown in Figure 4. 

Then the trans/post-event short-term risk is estimated as: 
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where p( | , , )DV DS EDP IM is the conditional probability mass function of achieving decision variable DV 

within Cobs scenarios, estimated by reweighting the original (long-term) probability of occurrence of the 

relevant scenario consistent with the values of DV, DS, EDP and IM, simply by dividing it by the sum of the 

probabilities of occurrence of all Cobs scenarios: 
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There is no element of time in Equation 5, hence no mean annual rate to compute, as the event has or is 

occurring. Thus, no λ(∙) term is needed. Compare also Equation 5 with Equation 2. Note how the 

consideration of “all” scenarios allowed us to simplify Equation 2, removing any conditioning on DS and 

EDP, and maintaining only IM as a summation variable. In the short-term assessment case this is no longer 



doable. The potential for having sensors of structural response, as well as damage state, do not allow us to 

perform a similar simplification on Equation 5. Now, we need to dig deep into all scenarios and keep only 

those that are compatible with the observations. Note also that, unless you believe in perfect models, 

unicorns and magic, there is a non-negligible chance that you may end up with observations that do not agree 

with any of your  IM scenarios and DS, EDP realizations. In such cases, looking for the closest ones may be 

the best strategy. Otherwise, one can only calibrate, improve and recompute.  

 

 

Figure 3. Long-term pre-event risk assessment process.  

 

 

Figure 4. Short-term trans/post-event scenario risk assessment process.  

 

EXAMPLES OF APPLICATION 

 

The devil is in the details, and the mathematical simplicity of Equations 1 and 5 hides a lot of messy details 

underneath. Defining the elements needed to apply the HAPI framework to different case studies remains a 

difficult process that requires a lot of data and non-negligible analysis. The ARCHYTAS project (Archetypal 

telemetry and decision support system for the protection of monumental structures) explored application to 

an ensemble of cultural heritage monuments subject to seismic and flood hazards with no interdependence 

other than geographical proximity. They HYPERION project (Development of a decision support system for 



improved resilience & sustainable reconstruction of historic areas to cope with climate change & extreme 

events based on novel sensors and modelling tools) added a historical city core, utilities, socioeconomic 

aspects and aging hazards, as conceptualized in Figure 5. PANOPTIS (Development of a decision support 

system for increasing the resilience of transportation infrastructure based on combined use of terrestrial and 

airborne sensors and advanced modelling tools by means of an open testbed stress-testing system) explored 

application to highway networks under seismic and weather hazards, while INFRASTRESS (Improving 

resilience of sensitive industrial plants & infrastructures exposed to cyber-physical threats) addressed the risk 

of refineries in earthquake-prone locations (Figure 6). Each application carried its own challenges and 

allowed us to further refine the details. As each project nears its completion, further information and 

knowledge gained will be disseminated and the HAPI approach will be refined to ensure wide and general 

applicability.   

 

 

Figure 5. Formulation of the HAPI digital twin for an urban area.  

 

 

 

Figure 6. Formulation of the HAPI integrated model for a refinery.  

 



CONCLUSIONS 

 

The HAPI framework for risk and resilience assessment of assets and infrastructure networks has been 

presented. It carries a formalization of well-known concepts, further adding a general approach for sensor 

fusion to enable both long and short-term assessments. Efforts to enhance and formalize it are still on-going, 

and are targeting ever widening applications to different systems and hazards. Stay tuned for the forthcoming 

advances as our work moves forward! 
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