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Summary 
 
The influence of the vertical component of ground motion is investigated for assessing the distribution of the seismic 
response of unanchored rigid blocks. Multiple stripes of site-hazard-consistent ground motions are employed for 
calculating the seismic response of rigid rocking blocks with and without the inclusion of the vertical component. The 
comparison of the resulting response is being made both for single records and full suites, employing a paired-record 
versus an ensemble-statistics comparison, respectively. It is shown that on a single record basis, the vertical component 
may have a non-negligible but highly variable influence on the rocking response, sometimes detrimental, sometimes 
beneficial. Still, when considering any large ensemble of records, the effect becomes statistically insignificant, except 
for the very specific case of rocking uplift for stocky blocks. To this end, for cases where the appearance of uplift is 
associated with damage, closed-form expressions are proposed to modify the lognormal fragility function of rocking 
initiation given the block slenderness and the ratio of the peak vertical over the peak horizontal ground acceleration.  
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1 INTRODUCTION 
 
Since Housner’s pioneer study in 1963 [1], the dynamics of the rocking response of unanchored rigid blocks have 
been the subject of numerous studies, [e.g., 2–13]. This interest stems from the application of the rocking oscillator 
as the seismic response mechanism in various structural types such as masonry structures [e.g., 14, 15], 
monumental structures [e.g., 16, 17], bridges [e.g., 18, 19], or building unanchored contents [e.g., 20, 21]. Most of 
the studies in the field have investigated thoroughly the response of the rocking oscillator under horizontal 
excitations. Both analytical pulses and earthquake ground motion waveforms, natural or artificial, have been 
studied, identifying the parameters that define the problem (block geometry and excitation characteristics). 
 
Although most of the studies on the rocking block consider only the horizontal component of the excitation, there 
is also literature on the influence of the vertical component on rocking. For instance, Yim et al. [2], found that the 
vertical acceleration may significantly influence the rocking response. In a same pattern, Dimentberg [22] 
demonstrated that a strong vertical component, compared to the horizontal one, affects the overturning probability. 
Taniguchi [23] concluded that the vertical component should be included into the analysis of the seismic response 
of a rigid body since it adds irregularities on the different types of response. For instance, when slipping of the 
body is taken into account, the inclusion of the vertical acceleration helps the “liftoff-slip” interaction motion by 
reducing the friction between the block and its support base [23]. On the contrary, Ishiyama in 1982 [3], Shi et al. 
in 1996 [24], Makris and Zhang in 1999 [25], and recently Makris and Kampas [26] and Linde et al. [27] concluded 
that the vertical component has a negligible impact on the rocking response of slender blocks or even on the stocky 
ones for practical purposes. The main reasons for this marginal effect are the geometry of the problem, the typical 
low ratio of the vertical to horizontal component maximum acceleration, and the high-frequency content of the 
vertical component. 
 
While some early concepts of probabilistic treatment of the problem at hand have appeared in the literature 
(especially [2,22]), they are naturally limited by the analysis capabilities of their era. Linde et al. [27] offer a more 
modern view, but mainly focusing on other salient aspects of the problem at hand. Herein, we attempt to 
comprehensively quantify the impact of the vertical component when the seismic response of rocking blocks is 
investigated within a state-of-art probabilistic framework for seismic vulnerability assessment. To this end, a 
comparative study is presented for the seismic response of rocking blocks with and without the inclusion of the 
vertical component of natural ground motions. Multi-Stripe Analysis (MSA) [28] is employed by using natural 
ground motions that have been selected to be consistent with site-specific seismic hazard via Conditional Spectrum 
(CS) techniques [29, 30, 31]. After the analysis, we present a direct comparison of the seismic response with and 
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without the vertical component both on the basis of single records and entire ground motion suites, comparing 
both raw response and fragility functions [32]. The comparison demonstrates the marginal effects of the vertical 
component on the rocking response for slender blocks for all practical purposes. On the other hand, some 
differences are shown for stocky blocks in the uplift neighborhood. Uplift of a rigid block can be a critical condition 
for a range of (uplift-sensitive) structures or equipment such as liquid-storage tanks, objects of art, computer 
servers etc. Hence, we proceed with a further investigation of the uplift neighborhood offering a link between the 
uplift threshold and the ratio of the vertical over the horizontal peak ground acceleration (PGA) that can convey 
the influence of neglecting the vertical acceleration for uplift-sensitive blocks.     
 

 
2 ROCKING RESPONSE OF FREE-STANDING RIGID BLOCKS UNDER HORIZONTAL AND 

VERTICAL GROUND MOTIONS 
  
Figure 1 presents the planar two-dimensional (2D) rectangular rocking block, having base width of 2b, height of 
2h, and a uniformly distributed mass m. Equivalently, the geometry of the block can be defined by its semi-diagonal 
R and its slenderness angle α (Figure 1). The block stands freely on a rigid supporting base and it is subjected to 
ground excitation. Assuming that the coefficient of friction between the block and its support is high enough to 
prevent sliding, the seismic response mechanism is pure rocking when the ground shaking is strong enough to 
trigger uplift. After uplift, the block rocks between its pivot points O-O’. The rocking equation of motion under 
horizontal excitation has been proposed by Housner [1] and, for a rectangular block, can be expressed in a compact 
form as [10]: 
 

𝜃̈ = −𝑝ଶ ൤sin(𝛼sgn(𝜃) − 𝜃) +
𝑢̈௚௛

g
cos (𝛼sgn(𝜃) − 𝜃)൨ (1) 

 
where θ is the tilt (rocking) angle (Figure 1) and 𝑝 = ඥ(3g)/(4𝑅) is the frequency parameter of the rocking block. 
The oscillation frequency of a rigid block under free vibration is not constant because it strongly depends on the 
vibration amplitude [1]. Nevertheless, p is a measure of the dynamic characteristics of the block and is equal to 
the in-plane pendulum frequency of the block as if it were hanging from its rocking rotation point [33]. 
 
Yim et al. [2] have extended the equation of rocking motion to include the vertical component, while Makris and 
Kampas [26] have expressed it in compact form as: 
 

𝜃̈ = −𝑝ଶ ൤൬1 +
𝑢̈௚௩

g
൰ sin(𝛼sgn(𝜃) − 𝜃) +

𝑢̈௚௛

g
cos (𝛼sgn(𝜃) − 𝜃)൨ (2) 

 

  

 
Figure 1 Planar model of a rocking block on a rigid base (left). Horizontal (N-S component), 𝑢̈௚௛(𝑡), and 

vertical, 𝑢̈௚௩(𝑡), excitation recorded in the 1989 Loma Prieta earthquake, Agnews State Hospital station (right). 
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Energy is only dissipated at impacts (i.e. when the pivot point changes). Housner [1] assumed that the impacts are 
instantaneous and that the impact forces are concentrated at the new pivot point. Under these assumptions, 
conservation of angular momentum can be applied to determine the ratio of the post-impact to the pre-impact 
angular velocity (“Coefficient of Restitution”) [9]:  
 

𝜂 =
𝜃̇௔௙௧௘௥

𝜃̇௕௘௙௢௥௘

= 1 −
3

2
sinଶ 𝛼 (3) 

 
Under purely horizontal ground excitation the block uplifts and starts rocking between its pivot points when the 
overturning moment due to the seismic excitation exceeds the restoring moment of gravity for the first time. Hence, 
uplift first occurs when [e.g., 6, 10]:  

𝑢̈௚௛ > g tan 𝛼 (4) 
 
where 𝑢̈௚௛ is the horizontal acceleration and g is the acceleration of gravity. When the vertical component is taken 
into account, the corresponding condition for block uplift becomes [26]: 

𝑢̈௚௛ > ൬1 +
𝑢̈௚௩

g
൰ g tan 𝛼 (5) 

 
where 𝑢̈௚௩ is the concurrent value of the vertical acceleration.  
 
Even though there can theoretically be cases where the rocking angle θ dynamically exceeds the slenderness angle 
α without the block overturning, such cases are rare and conservatively, in this paper, we assume that θ = α results 
in overturning. Also, in Figure 1, the horizontal and the vertical components are presented for an example ground 
motion. As shown, the waveform of the vertical component is of higher frequency than that of the horizontal one. 
The intensity of the vertical component may be higher than the corresponding horizontal component(s) in the near 
field, yet the vertical over horizontal PGA ratio is generally considered to be lower than 1.0 as it tends to attenuate 
with distance from the rupture [34, 35] especially for events with moment magnitude M > 5.0 [36].        
 
3 MODELING AND ANALYSIS   
 
In this section, the geometric and dynamic characteristics of the rigid blocks that are employed as well as the 
analysis choices for the calculation of their seismic response, with or without including the vertical component, 
are presented.  
 
3.1 Rocking blocks under investigation 
      
The geometric and the dynamic characteristics of the blocks under investigation are captured in Table 1. Seven 
different block cases are employed representing blocks of various shapes and sizes. Some of them resemble 
existing structures whereas the rest are meant to create a range of realistic blocks of differing slenderness and size. 
Specifically, Block C represents a 2D analogue of a monolithic freestanding ancient column of the Temple of 
Aphaia in Aegina [17], Greece; Block E resembles a column of the Temple of Athene Nike in Athens [26], whereas 
Block G is a 2D model of a 32U server cabinet rack, i.e., a cabinet that can fit 32 standard rack units, each of 
1.75in or 4.445cm of internal clear height. The four other blocks are arbitrary cases of slender (i.e., A, B) or less 
slender (i.e., D, F) blocks. Additionally, in Table 1 the values of the coefficient of restitution via Eq. (3) are 
presented. As shown, by using the α-dependent Eq. (3), the stocky blocks (e.g., G) show considerably higher 
amount of total energy loss per impact (33%) in comparison with the slender blocks (e.g., 2% energy loss per 
impact for Block A).  
 

Table 1. Geometric and dynamic characteristics of the blocks under investigation. 

Block 2b (m) 2h (m) α (rad) R (m) p (s-1) η 

A 1.50 15.00 0.0997 7.5374 0.9880 0.99 

B 1.33 12.00 0.1104 6.0367 1.1040 0.98 

C 0.95 5.29 0.1777 2.6873 1.6546 0.95 

D 1.00 4.00 0.2450 2.0616 1.8892 0.91 

E 0.50 4.00 0.1244 2.0156 1.9106 0.98 

F 0.50 2.50 0.1974 1.2748 2.4024 0.94 

G 0.60 1.62 0.3547 0.8638 2.9185 0.82 
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3.2 Multi-stripe Analysis 
 
MSA is employed for determining the seismic response of the rocking blocks. It is applied by running sets of 
ground motions that have been scaled to match given values of the intensity measure (IM) corresponding to 
predefined hazard levels, the results appearing in characteristic “stripes” when plotted in IM versus engineering 
demand parameter (EDP) coordinates. The main advantage of MSA over its main “opponent” Incremental 
Dynamic Analysis (IDA) [37, 38] is that it can be directly linked with the site-specific seismic hazard via record 
selection. Record selection [29–31, 39–41] allows selecting ground motions that are consistent with the seismic 
hazard of a specific site. Herein, we employ records that have been selected by Kohrangi et. al 2020 [31] for the 
site of Elefsina, Greece. As conditioning IM, the geometric mean (or geomean) of the spectral acceleration of the 
two horizontal components for a vibration period of 0.3s and 5% viscous damping, Sahgm(0.3s), was employed. 
Based on the findings of Lin et. al [29], in general, mild changes to the conditioning period do not break hazard 
consistency. Hence, since the IMs that are used herein are the PGA and the peak ground velocity (PGV), a period 
of 0.3s is considered to be good enough to maintain some hazard consistency both at short (PGA) and moderate 
(PGV) periods; this allows us to make record-by-record investigations without needing to reselect records for each 
IM. Given 7 different hazard levels, which refer to IM values with a return period of 10 to 5000 years, the 
conditional target spectra were created for both the horizontal (geomean) and the vertical components, fully taking 
into account the correlation of spectral accelerations at different periods and between the vertical and horizontal 
component. Thus, at each level 77 natural ground motions were selected from the PEER database [42, 43] to match 
both the vertical and horizontal conditional spectra, using the so-called CS-Compatible approach [31]. The CS-
compatible approach [31] accounts for all relevant correlations between the horizontal and the vertical component 
of motion when selecting records resulting into selected sets that are hazard consistent both in the horizontal and 
in the vertical direction. All the selected ground motions were recorded on firm soil whereas they are mainly 
ordinary (i.e., no pulse-like, no long-duration) records. Some records characterized as pulse-like [44] are included 
into selection, mainly into the high IM levels, but since in all levels they are less than 10% of the total sample they 
do not affect the calculations one way or another.   
 
Since Sahgm(0.3s) is not a commonly used IM for rocking blocks, a shift to classic “rocking IMs” [e.g., 45, 46, 47] 
is of interest. To preserve as much as possible the desirable hazard consistency of CS selected sets, the records in 
each stripe were (separately) rescaled to match the median value of (i) the geomean peak ground acceleration 
(PGAhgm) and (ii) the geomean peak ground velocity (PGVhgm) of the horizontal components of the records selected 
at each of 7 levels of Sahgm(0.3s). For example, Figures 2a-b show the range of PGAhgm and PGVhgm corresponding 
to the 4th level of Sahgm(0.3s) and the location of the median value in each IM case, 0.61g and 37.84cm/s, 
respectively. By rescaling each of the 77 records in the stripe to match these new IM levels and running the 
response history analyses, four sets of MSA results were created, two for PGAhgm (Figure 2c) and two for PGVhgm 
(Figure 2d) with and without including the vertical component. Both the vertical and the horizontal components 
were scaled by the same factors in all cases. Given the 2D nature of the model, a single arbitrary horizontal 
component from each pair was assigned to all blocks. For the analysis under the selected and scaled ground 
motions, the scripts of Vassiliou [48, 49] for the rocking response of a planar rectangular rigid block were used. 
These Matlab [50] scripts, solve the rocking equation of motion using the ode45 [50] differential equation solver 
either under horizontal excitation via Eq. (1) [48], or under both horizontal and vertical excitation via Eq. (2) [49]. 
The peak absolute rocking angle, 𝜃௠௔௫, normalized by the block slenderness α was used as the EDP: 𝜃෨ = 𝜃௠௔௫/𝛼.  
 
Of the two IMs employed herein, PGAhgm is considered as efficient and sufficient only in the rocking uplift range 
(𝜃෨ < 0.10), whereas PGVhgm reigns supreme for higher rocking angles up to and including overturning [47]. Note 
that the two IMs can be employed in their geomean component form, PGAhgm and PGVhgm, or in their “arbitrary” 
form, using the values computed for the single horizontal component assigned to the 2D rocking block. Using the 
geomean values stems from the conventional use of an IM as the interface variable that links the structural response 
with the seismic hazard [47, 51, 52]. The hazard is typically estimated via ground motion prediction equations 
[e.g., 53] that refer to the geomean; thus, vulnerability studies are typically conducted on the basis of geomean IM 
values as well. However, the arbitrary component IMs tend to display somewhat lower dispersions when 
considering a pure 2D problem, as it is natural that using the IMs characterizing the actual component applied will 
increase the predictive capability. Still, given the overall high dispersion associated with rocking, this phenomenon 
mainly manifests itself in the uplift (or rocking initiation) neighborhood, where the PGAh of the actual horizontal 
component a “perfect” IM, as it can be directly associated with the rocking initiation in the planar rocking model 
at 𝑃𝐺𝐴௛ ≅ gtan𝛼. On the other hand, for the PGAhgm, there is some moderate uncertainty in estimating the 
threshold for rocking uplift due to the different peak values recorded in the two components. This will in turn force 
us to provide different approaches, one per IM type used.   
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(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 2. Example of IM conversion from Sahgm(0.3s) to PGAhgm and PGVhgm for the 4th IM level: (a) sorted values 
of PGAhgm corresponding to the 4th level of Sahgm(0.3s); (b) sorted values of PGVhgm corresponding to the 4th level 
of Sahgm(0.3s). Example MSA results for Block C without the vertical component, showing how the rescaled 
records form stripes at the median (c) PGAhgm and (d) PGVhgm values. 
 
4 COMPARISON OF THE ROCKING RESPONSE WITH AND WITHOUT THE VERTICAL 

COMPONENT 
 
The comparison of the rocking response with and without the vertical component is presented in this section. The 
comparison starts from the differences that are captured in the response between the two cases on a single ground 
motion basis and then escalates to the response statistics from the MSA results. 
 
4.1 Comparison on a single ground motion basis  
 
The first step of comparison refers to directly comparing the seismic response under a single ground motion with 
and without the inclusion of the corresponding vertical component. Figure 3 captures the 𝜃෨ values for 3 ordinary 
ground motions of the total sample of 77 for a specific PGVhgm level (i.e., stripe No. 4, PGVhgm = 37.84 cm/s) with 
and without the vertical component for Block C. As shown, no uniform conclusion can be deduced from the results. 
The inclusion of the vertical component may lead to detrimental or beneficial impact on the response, while the 
magnitude of the effect itself can range from considerable (e.g., ground motion 1) to marginal (e.g., ground motion 
2, ground motion 3). For instance, for ground motions 1 and 3, the vertical component increases the seismic 
demand values, either significantly for the former or marginally for the latter. Contrarily, for ground motion 2, 
including the vertical component leads to lower demand values. These observations can be attributed to the highly 
nonlinear nature of rocking that is strongly dependent on the waveform of the ground motion and the correlation 
between vertical and horizontal waveforms when the former is also included into analysis. Thus, a single record 
case has little to say about the actual influence of the vertical component on the response. Notably, the first ones 
to suggest that the rocking problem should be treated statistically were Yim et al. [2] as early as 1980, when they 
reported that “the rocking response of a block is very sensitive to small changes in its size and slenderness ratio 
and to the details of the ground motion” and that to observe systematic trends one needs to study the problem 
probabilistically. 

0 20 40 60 80

records

0

0.2

0.4

0.6

0.8

1

median PGA
hgm

 = 0.61 g

median point

0 20 40 60 80

records

0

20

40

60

80

100

median PGV
hgm

 = 37.84 cm/s

median point

0 0.2 0.4 0.6 0.8 1

θ
max

/α

0.15

0.34
0.45

0.61

0.78
0.87

1.16

stripe No. 4

no uplift
safe rocking
overturning

0 0.2 0.4 0.6 0.8 1

θ
max

/α

7.88

20.53
27.26

37.84
45.35

52.89

70.42

stripe No. 4

no uplift
safe rocking
overturning



6 

 
Figure 3. 𝜃෨ values for 3 of the 77 ground motions in stripe No. 4 of PGVhgm with and without including the vertical 
component in the analysis of Block C. 
 
4.2 Comparison on an ensemble of ground motions basis 
 
As the comparison on a single record basis has little to offer under high uncertainty, two different approaches for 
ensemble-level comparisons are employed to determine the influence of the vertical component. First is a paired 
record-by-record comparison, whereby we take advantage of analysis results under the same horizontal component 
with and without the vertical. The second is a comparison of statistics characterizing stripes at the same IM level 
when including versus neglecting the vertical acceleration, comparing central values, dispersions, fragilities, and 
entire sample distributions. The first approach is considered a stronger test, as it can more reliably detect deviations 
in the two versions of the problem even when using small samples, in the same way that medical studies can 
employ a small number of twins to test the effectiveness of a treatment. The second is less sensitive, akin to larger 
random sample medicinal tests in “similar groups of patients”; still, it is more characteristic of how the results 
would translate to response distributions and then to performance estimates in practical applications. 
 
For the record-by-record comparison, we turn to the MSA results obtained with and without including the vertical 
component. For each data point, characterized by the triplet of block, record and IM level, we are first interested 
in the “matching” of behavior regime between the two sets (i.e., with and without the vertical component) of 
responses. In other words, we are interested in whether in both cases the system has displayed (i) no uplift (𝜃෨ =
0), (ii) safe rocking (0 < 𝜃෨ < 1), or (iii) overturning (𝜃෨ ≥ 1). Data points with matching behaviors of no uplift 
or overturning are considered to constitute a case of non-existent influence of the vertical component. Non-
matching cases indicate exactly the opposite. As shown in Figure 4, the matched safe rocking cases are the majority 
in most of the blocks and IM-levels except for the low IM-levels in the less slender blocks where many matching 
no-uplifts are observed. This happens due to the direct association of the slenderness angle with the PGAh required 
for uplift. For instance, only matched no rocking cases are captured for the Block G in the lower intensity levels 
since in these levels none of the 77 records is strong enough to trigger rocking for this stocky block. On the other 
hand, in higher IM-levels some few matched cases of overturning are captured. At worst, only 10% of the ground 
motions at any stripe show non-matching behavior, as indicated by the 90% to 100% cumulative percentage of 
matching cases in Figure 4.    
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(a) Block A – PGAhgm (b) Block A – PGVhgm 

  
(c) Block C – PGAhgm (d) Block C – PGVhgm 

  
(e) Block G – PGAhgm (f) Block G – PGVhgm 

Figure 4. Percentage of records displaying matching behavior of no uplift, safe rocking, or overturning when 
applied with versus without the vertical component. Blocks A, C, G, using PGAhgm (left) and PGVhgm (right) as 
IMs. 
 
For cases falling in the safe rocking regime, the ratio of response is needed to further distinguish the existence or 
not of an effect. Specifically, by taking the full MSA results of the N matching safe rocking per stripe the ratio of 
the 𝜃෨ values with and without including the vertical component is computed for the i-th stripe (i = 1…7) and the 
j-th record (j = 1…N) as: 

𝑟௩/௡௩
௜,௝

=
𝜃෨௩

௜,௝

𝜃෨௡௩
௜,௝

 (6) 

 
where  𝜃෨௩

௜,௝ is the 𝜃෨ value for the record j in stripe i where both the vertical and the horizontal components are 

considered, and 𝜃෨௡௩
௜,௝ is the corresponding result when only the arbitrary horizontal component is employed. The 

resulting ratios are presented as boxplots [54] in Figure 5 for four blocks of Table 1. In each horizontal stripe (IM-
level) the central mark denotes the median ratio; the notches indicate the 95% confidence interval of the median; 
the left and right edges of the box denote the 25% and 75% values, respectively; the whiskers the interquartile 
range. Herein, it was set equal to 1.5 times the 25-75% range. Crosses indicate ratios falling outside the whiskers, 
which are treated as outliers or extreme values.  
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(a) Block A – PGAhgm (b) Block A – PGVhgm 

  
(c) Block C – PGAhgm (d) Block C – PGVhgm 

  
(e) Block E – PGAhgm (f) Block E – PGVhgm 

  
(g) Block G – PGAhgm (h) Block G – PGVhgm 

Figure 5. Boxplots of the ratio of response with the vertical component over without, shown for matching safe-
rocking cases for Blocks A, C, E, G using PGAhgm (left) and PGVhgm (right) as IMs.  
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       (a)  (b)       (c) 

 

Figure 6. Moment-arm of the vertical component in rocking blocks: (a) slender block near overturning; (b) slender 
block in rocking initiation; (c) stocky block in rocking initiation. 
 
In general, for the slender blocks (A, B, E) the 95% confidence interval on the median ratio brackets 1 for all the 
stripes both for PGAhgm and PGVhgm; thus, little influence of the vertical is indicated. When looking at less slender 
blocks (C, F, D, G) the same observation holds for the higher stripes, away from uplift. On the other hand, no 
uniform conclusion can be stated for the effect of the vertical component in the rocking initiation neighborhood. 
For instance, for the stocky Block G the median ratio noticeably differs from 1 when PGVhgm is employed as IM 
whereas for PGAhgm it remains close to 1 in all cases. Hence, a potential effect cannot be overruled for rocking 
initiation. There is also a fairly large dispersion of results in the uplift neighborhood, which can be associated with 
the lower number (i.e., small sample) of matching safe-rocking cases as presented in Figure 4.  
 
Overall, these observations agree with existing literature findings [e.g., 3, 25–27] that block geometry defines the 
influence of the vertical component. The vertical acceleration is multiplied by sin(𝛼sgn(𝜃) − 𝜃) in Eq. (2), while 
the horizontal acceleration by cos(𝛼sgn(𝜃) − 𝜃). Close to overturning (𝜃 ≅ 𝛼), the influence of the vertical 
component is minimal, as sin0 = 0, or equivalently by virtue of the moment-arm of the vertical component 
essentially being zeroed out at the precipice of falling over (Figure 6a). On the contrary, the lever arm is maximal 
(equal to b, Figure 6b) at the verge of uplift (𝜃 ≅ 0). Thus, while a relatively low α <0.25 rad (slender blocks) 
would still result in a low influence of the vertical component, for higher values of α (stockier blocks Figure 6c) 
the sine and cosine multipliers come closer for 𝜃 ≅ 0, allowing the observed influence of the vertical acceleration.    
 
Now, we turn to the ensemble statistics of response. Adopting a lognormal distribution assumption [47], we are 
primarily interested in the median and the standard deviation of the natural logarithm of the response, or 𝜃෨ହ଴ and 
β, respectively. Obviously only the matching safe rocking responses are considered, as zero or “infinite” 
overturning responses can play havoc with numerical comparisons. Figure 7 and Figure 8 show the ratio of the 
resulting 𝜃෨ହ଴ and β values with and without the vertical component per stripe for two representative blocks: slender 
Block A and stocky Block G. As shown, for both quantities the differences are moderate in most of the cases (less 
than 20%), with the exception of few levels where differences up to 40% are observed. There is also a large deviant 
ratio of medians exceeding 2.0 in Figure 7d; this appears for stocky Block G in the lowest PGVhgm stripe implying 
a non-negligible detrimental effect of the vertical acceleration in the rocking uplift area. Otherwise, there is little 
evidence to support the existence of significant influence when considering “horizontal” (given IM) sample 
statistics.  
 
Next, we proceed to the comparison of fragilities. This is directly equivalent to considering “vertical” (given EDP) 
sample statistics [32], and while it may seem like a superfluous way of reconfirming our findings from horizontal 
statistics, it carries one important advantage: All three regimes of response can now be treated in a single test (at 
least when looking at EDP thresholds other than uplift or overturning). Specifically, by taking the full MSA results 
with and without the inclusion of the vertical component, empirical cumulative distribution functions (CDFs) are 
calculated for three 𝜃෨ thresholds representing rocking uplift (𝜃෨ ≅ 0), an intermediate safe rocking condition (𝜃෨ ≅

0.35), and finally the overturning threshold (𝜃෨ ≅ 1.00). As Figure 9 shows, minor differences appear for both the 
slender Block A and the stocky Block G. The impact may randomly be beneficial or detrimental, without any clear 
trend. The only potential exception once again appears in the uplift neighborhood, where the inclusion of the 
vertical component leads to marginally worse fragilities. 
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(a) Block A – PGAhgm (b) Block A – PGVhgm 

  
(c) Block G – PGAhgm (d) Block G – PGVhgm 

Figure 7. Ratio of the median (𝜃෨ହ଴) values per stripe for matched safe-rocking cases with (v) and without (nv) 
including the vertical components into analysis for Blocks A and G.  
 
 

  
(a) Block A – PGAhgm (b) Block A – PGVhgm 

  
(c) Block G – PGAhgm (d) Block G – PGVhgm 

Figure 8. Ratio of the standard deviation of the natural logarithm of the 𝜃෨ values per stripe for matched safe-
rocking cases with (v) and without (nv) including the vertical components into analysis for Blocks A and G.  
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(a) Block A – PGAhgm (b) Block A – PGVhgm 

  
(c) Block G – PGAhgm (d) Block G – PGVhgm 

   Figure 9. Empirical CDF fragility points at three pre-defined 𝜃෨ capacity thresholds for given PGAhgm and PGVhgm 
for two case-study blocks. Estimates with (+) and without (o) the vertical component are compared.  
 
Although the differences appearing in Figure 9 are not visually considerable, proper statistical testing is warranted. 
For this we employ the two-sample Kolmogorov-Smirnov test [55–57] at each stripe to formally compare the 
distribution of samples with and without the vertical component. This statistical test checks the null hypothesis 
that the two tested samples come from the same continuous distribution. All the 77 values of 𝜃෨ are considered, 
regardless of the rocking regime where they fall in. To avoid superfluous responses, all overturning cases were 
assigned a value of 𝜃෨ = 1.00. Figure 10 illustrates an example of the test p-values obtained for Blocks A and G. 
p-values higher than 0.05 are found at all stripes, thus we do not have enough evidence to reject the null hypothesis 
at the 95% significance level. In other words, there is little support that the vertical component has any significant 
influence, at least not that can be reliably detected when 77 records are employed. These observations stand for all 
seven blocks and both IMs employed, showing that even the moderate differences captured in Figures 7–9 are not 
statistically significant.  
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(a) Block A – PGAhgm (b) Block A – PGVhgm 

  
(c) Block G – PGAhgm (d) Block G – PGVhgm 

Figure 10. p-values of the two-sample Kolmogorov Smirnov test estimated at each stripe when comparing the 
samples of 𝜃෨ with and without the vertical component for Blocks A and G. 
 
5 INFLUENCE OF THE VERTICAL COMPONENT IN THE ROCKING INITIATION AREA 

Although the effect of the vertical component on the rocking response seems to be marginal in most of the previous 
comparison stages, as discussed earlier, it may still influence rocking uplift for stocky blocks. Even in such cases, 
though, the influence of the vertical acceleration rapidly fades away as one moves away from the uplift region. In 
practice, accounting for this effect makes sense only for cases where even a small uplift is associated with damage, 
as is the case with, e.g., overall brittle objects (such as objects of art), edges/toes vulnerable to crushing, or 
unanchored liquid storage tanks prone to elephant foot buckling. Quantifying this effect at the initiation of rocking 
can provide a practical upper bound to the influence of vertical acceleration in this range of response. Since the 
effect mainly appears for the stockier of the blocks of Table 1 some extra stocky blocks are added at this stage 
with the characteristics appearing in Table 2. These additional blocks have slenderness angles ranging within 0.44-
0.67 rad. The upper value of 0.67 rad refers to a very stocky block that may be more prone to sliding rather than 
rocking. However, we assume that the supporting surface’s coefficient of friction is high enough to assure the pure 
rocking response.  

 
Table 2. Geometric and dynamic characteristics of the extra stocky blocks. 

Block 2b (m) 2h (m) α (rad) R (m) p (s-1) η 

H 2.40 5.00 0.4475 2.7731 1.6289 0.72 

I 0.60 1.00 0.5404 0.5831 3.5522 0.60 

J 3.00 4.00 0.6435 2.500 1.7155 0.46 

K 0.80 1.00 0.6747 0.6403 3.3898 0.41 

L 1.60 2.00 0.6747 1.2806 2.3969 0.41 

For the analysis, the full set of blocks in Tables 1 and 2 undergo an iterative analysis procedure. Specifically, by 
taking the 77 records (both the horizontal and the vertical component) of the lowest MSA stripe of the previous 
section that correspond to the low-hazard area, a new block-specific set of stripes is created in the neighborhood 
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of uplift for different ratios of vertical versus horizontal PGA. Multiple ratios are considered for both the arbitrary 
horizontal component, as 𝑃𝐺𝐴௩  /𝑃𝐺𝐴௛, and the geomean one, or 𝑃𝐺𝐴௩ /𝑃𝐺𝐴௛௚௠. In both cases, the new set of 
stripes is employed for the twelve blocks (A to L) by scaling per record the horizontal component to nine IM levels 
ranging from 0.60 to 1.20 times the uplift threshold of g tan 𝛼, given six different ratios of vertical versus horizontal 
PGA varying within 0 (i.e., analysis only with the horizontal component) and 1.25 (i.e., the vertical component is 
scaled to be 1.25 times the corresponding horizontal component). This may preserve hazard consistency in the 
horizontal direction, but it probably breaks it in the vertical. Still, given that it is only the effect of the peak 
accelerations that is investigated under near-static conditions, this is a loss of no consequence. It is also important 
here to say that for high levels of vertical acceleration the block may eventually jump, completely losing contact 
with the supporting surface [27]. Such bouncing of the block cannot be captured by our simplified model; this 
could be an issue if one is interested in fully characterizing the block behavior, yet it is not problematic in our case 
as such an excitation will surely force uplift of the simplified model. In other words, the appearance of damage 
will not be mischaracterized. 

For each block and vertical/horizontal ratio, after employing MSA for the new sets of stripes by using the scripts 
of Vasilliou [48-49], the uplift (𝜃෨ > 0) empirical fragility CDF is calculated; then a lognormal distribution is fitted 
via the maximum likelihood approach [58] as presented in Figures 11–12. In all cases, the vertical component 
mainly affects the stocky blocks by reducing the median IM to trigger uplift. The effect is attenuated as the blocks 
become more slender (lower α). Regarding the two different IMs employed, for the case of PGAh, zero dispersion 
is captured in the fragilities for the no vertical case since the uplift is directly associated with the PGAh of the 
arbitrary component. Contrarily, for the PGAhgm, a constant dispersion approximately equal to 0.17 is captured for 
the no vertical uplift fragilities in all the block cases. This dispersion stems from the differences in intensity 
between the two horizontal components of each pair and it is essentially a property of the record set used, rather 
than the block itself; actually, a similar dispersion has been found using a different record set in [59]. One more 
observation worth mentioning is that, for both IMs the uplift fragilities of two blocks of same slenderness and 
different sizes (i.e., Block K and Block L) are almost identical (results of Block K are not shown herein for reasons 
of brevity). This observation stems from the fact that the investigation considers only the uplift region, which is 
strongly associated only with the block’s slenderness angle α. For higher levels of response, larger differences 
between the two blocks are expected, since additional parameters, i.e., block size and ground motion characteristics 
beyond PGA, will affect the response of each block. 
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(a) Block A (b) Block C 

  
(c) Block G (d) Block H 

  
(e) Block I (f) Block L 

Figure 11. Fragility functions (empirical CDF points plus lognormal fit) for rocking uplift (i.e., 𝜃෨ > 0) given the 
arbitrary component PGAh for different ratios of 𝑃𝐺𝐴௩  /𝑃𝐺𝐴௛  .  
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(a) Block A (b) Block C 

  
(c) Block G (d) Block H 

  
(e) Block I (f) Block L 

Figure 12.  Fragility functions (empirical CDF points plus lognormal fit) for rocking uplift (i.e., 𝜃෨ > 0) given the 
geomean component PGAhgm for different ratios of 𝑃𝐺𝐴௩  /𝑃𝐺𝐴௛௚௠. 
 
Since the lognormal distribution model shows excellent promise in fitting the uplift fragilities, we seek trends in 
its two defining parameters: the median IM (PGAh50, or PGAhgm50), here taken minus the rocking uplift threshold 
of Eq. (4), disregarding the vertical component for simplicity, and the dispersion (βh, or βhgm). This shifting (or 
reduction) of the median IM by g tan 𝛼 allows us to efficiently zoom into the effect of the vertical acceleration, as 
we take out the (larger) main effect of the horizontal. Specifically, for the case of PGAh, both median and dispersion 
follow a linear pattern with respect to 𝑃𝐺𝐴௩ /𝑃𝐺𝐴௛ (Figure 13a-b). Hence, a linear regression in the form of 𝑦 =
𝑏ଵ𝑥 is found to be an efficient fit for both (𝑃𝐺𝐴௛ହ଴ − g tan 𝛼) and βh against 𝑃𝐺𝐴௩  /𝑃𝐺𝐴௛, showing high R2 
values, as shown in Figure 13a-b. The slope of the lines shows that the effect of the vertical component is higher 
for the stocky blocks (i.e., Block L). On the other hand, for the case of PGAhgm, different trends are found to fit 
(𝑃𝐺𝐴௛௚௠ହ − g tan 𝛼) and βhgm against 𝑃𝐺𝐴௩  /𝑃𝐺𝐴௛௚௠. For the former, a classic linear model in the form of 𝑦 =

𝑏ଵ𝑥 + 𝑏ଶ is a good choice (Figure 13c), whereas for the latter a constant dispersion of about 0.17 is accurate enough 
for all blocks (Figure 13d). As illustrated in Figure 13a classic linear model with a constant term may be more 
appropriate for some block cases (e.g. Block L) also for the case of (𝑃𝐺𝐴௛ହ଴ − g tan 𝛼). However, since under 
PGAh the uplift threshold under only the horizontal component (i.e., 𝑃𝐺𝐴௩ /𝑃𝐺𝐴௛ = 0) is deterministically 
defined, a linear regression model without a constant term is preferred for this case. In addition, differences 
between the two models are expected to be minor, whereas the adopted model seems to fit efficiently the majority 
of the blocks employed.  In all cases, the results for Block K replicate Block L since they share the same slenderness 
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angle; thus Block K is removed from all subsequent fitting to achieve a homogenous sample rather than placing 
double weight on one specific value of α.  
 

  
(a) median in PGAh terms (b) dispersion in PGAh terms 

  
(c) median in PGAhgm terms (d) dispersion in PGAhgm terms 

Figure 13. Linear regression of IM median and dispersion for the rocking initiation of six of the blocks under 
investigation against: (a)-(b) the ratio 𝑃𝐺𝐴௩  /𝑃𝐺𝐴௛; (c)-(d) the ratio 𝑃𝐺𝐴௩ /𝑃𝐺𝐴௛௚௠. 

  
(a)  (b) 

Figure 14. Power-law fit to the b1 coefficients used for capturing (𝑃𝐺𝐴௛ହ଴ − g tan 𝛼) and βh versus the blocks’ 
slenderness angle α. 
 
In a second regression step, the coefficients estimated for the IM median and dispersion are correlated with the 
slenderness angle α. For PGAh, again, a fitting without intercept is desired for both quantities; for 𝛼 → 0, per the 
geometric interpretation of Figure 6, there should be a near-zero influence of the vertical component in the uplift 
neighborhood, thus b1 should tend to zero. From the data points in Figure 14, a power-law offers a good fit for 
both the median and the dispersion’s b1 coefficients. Following a similar pattern for the case of PGAhgm, a power-
law fit is also found efficient for fitting b1 and b2 for (𝑃𝐺𝐴௛௚௠ହ଴ − g tan 𝛼) as shown in Figure 15.  
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(a)  (b) 

  
Figure 15. Power-law fit to the b1 and b2 coefficients used to capture (𝑃𝐺𝐴௛௚௠ହ଴ − g tan 𝛼) versus the blocks’ 
slenderness angle α. 
 
After this two-level fitting procedure, the median estimates of (𝑃𝐺𝐴௛ହ଴ − g tan 𝛼) and βh used to define the 
lognormal fragility of rocking uplift can be expressed as a function of two parameters, namely α in rad and 
𝑃𝐺𝐴௩  /𝑃𝐺𝐴௛, as:  
 

(𝑃𝐺𝐴௛ହ଴ − gtan𝛼)ହ଴

g
= −0.58𝛼ଷ.଴଴ ൬

𝑃𝐺𝐴௩

𝑃𝐺𝐴௛

൰ (7) 

  

𝛽௛ହ଴ = 0.21𝛼଴.଻ଵ ൬
𝑃𝐺𝐴௩

𝑃𝐺𝐴௛

൰ 
(8) 

  
In retrospect, the expressions employed for Eq. (7), (8) are amenable to a single stage linear regression in 
logarithmic space that would allow the direct determination of all coefficients as well as the associated standard 
error. In other words, such a regression would conform to a lognormal model of the output, which is why we 
named the results as median estimates, rather than means. Either way, for the total k = 55 non-zero points 
comprising eleven values of α times five vertical/horizontal ratio levels, the model dispersion around the medians 
of Eqs (7), (8) can be calculated as:  

𝜎௟௡௬ =
1

𝑘 − 2
ඩ෍(ln 𝑦௜ − ln 𝑦௜

ᇱ)ଶ

௞

௜ୀଵ

 (9) 

  
where yi refers to the k = 55 median (minus gtanα) or dispersion values resulting from the block fragilities, while 
the 𝑦௜

ᇱ are the corresponding predictions of Eqs (7), (8). The resulting error dispersions via Eq. (9) are 0.0649 for 
the median (𝑃𝐺𝐴௛ହ଴ − gtan𝛼)ହ଴ and 0.0447 for the dispersion 𝛽௛ହ଴. Given the lognormality assumption, both 
values can be interpreted as coefficients of variation of 6.5% and 4.5%, respectively, and are practically 
insignificant, indicating a good fit.  
 
For the case of 𝑃𝐺𝐴௛௚௠  the fitted expressions are: 

൫𝑃𝐺𝐴௛௚௠ହ଴ − gtan𝛼൯
ହ଴

g
= min ቊ−0.61𝛼ଶ.଺ସ ቆ

𝑃𝐺𝐴௩

𝑃𝐺𝐴௛௚௠

ቇ + 0.07𝛼ଶ.଴ଷ, 0 ቋ 
(10) 

  
𝛽௛௚௠ହ଴ = 0.17 (11) 

  
For the central value, we chose to employ a hard cut-off value at zero, discarding any minor exceedances 
(seemingly increases of the median) at low 𝑃𝐺𝐴௩  /𝑃𝐺𝐴௛௚௠. Overall, the forms of Eq. (10), (11) do not clearly 
support lognormality, necessitating a closer look at the residuals. Still, expecting a similarly good fit and to avoid 
overcomplicating the situation, lognormality was adopted and the standard errors via Eq. (9) are 0.1041 for the 
median ൫𝑃𝐺𝐴௛௚௠ହ − gtan𝛼൯

ହ଴
and 0.0068 for the dispersion (𝛽௛௚௠ହ଴). Once again, the errors are minimal; 

therefore, whether we chose or not the proper distribution model for the residuals is of little consequence. 
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Now, as a simple example of practical application, the case of server racks is considered. These are uplift-sensitive 
components since they contain hard drives with specific acceleration tolerances; any impact due to uplift may 
cause a head crash, potentially resulting to complete loss of the hard drive [60]. Three racks of the same 0.60m 
base width are considered: a 15U rack with a total height of 0.87m (α= 0.60 rad), a 20U rack of 1.09 m (α= 0.50 
rad), a 30U of 1.53 m (α= 0.37 rad), and a 42U of 2.05 m (α= 0.28 rad). The (median) parameters of the lognormal 
uplift fragility estimated via Eq. (7)–(8) for the arbitrary component are presented in Figure 16. As expected, when 
the vertical acceleration is neglected (i.e 𝑃𝐺𝐴௩  /𝑃𝐺𝐴௛ = 0) the central value becomes 𝑃𝐺𝐴௛ = gtan𝛼, whereas 
the dispersion 𝛽௛ହ଴ is equal to 0. When the ratio of the vertical-to-horizontal acceleration increases, as would be 
the case for sites closer to a fault, the median uplift threshold universally shifts to lower  𝑃𝐺𝐴௛ values. This 
reduction can range from noticeable, for the stockier 15U or 20U racks, to marginal for the less stocky 42U rack. 
At the same time, the dispersion is increased. Overall, the 15U server loses ~20% of its median capacity when the 
peak vertical acceleration equals the horizontal, with higher ratios proportionally reducing the uplift threshold. 
This loss drops to ~10% for the 20U rack and becomes much less pronounced for the taller 30U and 42U. Whether 
these values carry any appreciable consequences for the seismic safety of such sensitive equipment is beyond the 
scope of our study. For what it is worth, this is the effect of the vertical acceleration on the uplift safety of simple 
rigid blocks and Eqs (7)–(8) and (10)–(11) capture it to near perfection.    
 

  
(a)  (b) 

  
Figure 16. Example of using Eqs (7), (8) to assess (a) the median and (b) the dispersion of the lognormal uplift 
fragility function of four server racks, 15/20/30/42U, listed from stockier to more slender. 
 
6 CONCLUSIONS 

A detailed investigation has been presented on the impact of including the vertical component of the seismic 
excitation into the analysis of rocking blocks under a probabilistic view. After investigating thoroughly the seismic 
response of multiple rigid blocks varying in shape and size, the main findings can be summarized as follows: 

 On a single-ground-motion basis, the differences in the response when the vertical component is included 
can vary from moderate to considerable between different records whereas the vertical component may 
arbitrarily lead to higher or lower seismic demands for the block. This can be attributed to the nature of 
the rocking problem that is highly sensitive to small changes in its parameters. 

 On a sample-of-records basis, the impact of the vertical component is found to be marginal for the slender 
blocks or even for the stocky ones for all practical purposes of moderate to large rocking response and 
overturning. Therefore, one can conclude that neglecting the vertical component does not induce any bias 
in the probability of reaching or exceeding response values in these regimes. However, the vertical 
component may influence the uplift of stocky blocks due to the geometry of the problem: For large 
slenderness angles and when the block is about to start rocking, the vertical component appears in the 
equation of motion multiplied by a factor of similar magnitude to the factor multiplying the horizontal 
component. This last observation stems from the geometry of the problem and is in accordance with 
existing literature. 

 A higher peak vertical ground acceleration linearly reduces the horizontal acceleration needed to cause 
uplift. The median and the dispersion of a lognormal uplift fragility can be reliably predicted from the 
slenderness angle (α) and the vertical over horizontal peak ground acceleration ratio.  
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Finally, a comprehensive approach is offered for probabilistically investigating the influence of different modeling 
parameters, loading conditions and system properties on seismic demand and capacity; it may have only been 
showcased for simple rocking blocks, but can be employed with practically any other structural system.  
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